These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29738980)

  • 1. Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion.
    Wang J; Yu H; Zhu K
    Bioresour Technol; 2018 Sep; 263():172-179. PubMed ID: 29738980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.
    Kang MK; Nielsen J
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):613-622. PubMed ID: 27565672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic metabolic pathways for conversion of CO
    Yunus IS; Anfelt J; Sporre E; Miao R; Hudson EP; Jones PR
    Metab Eng; 2022 Jul; 72():14-23. PubMed ID: 35134557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast.
    Zhou YJ; Hu Y; Zhu Z; Siewers V; Nielsen J
    ACS Synth Biol; 2018 Feb; 7(2):584-590. PubMed ID: 29284088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.
    Chen B; Lee DY; Chang MW
    Metab Eng; 2015 Sep; 31():53-61. PubMed ID: 26164646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing a P450 fatty acid decarboxylase from
    Lee JW; Niraula NP; Trinh CT
    Metab Eng Commun; 2018 Dec; 7():e00076. PubMed ID: 30197865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase.
    Rui Z; Li X; Zhu X; Liu J; Domigan B; Barr I; Cate JH; Zhang W
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18237-42. PubMed ID: 25489112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic metabolic pathways for photobiological conversion of CO
    Yunus IS; Wichmann J; Wördenweber R; Lauersen KJ; Kruse O; Jones PR
    Metab Eng; 2018 Sep; 49():201-211. PubMed ID: 30144559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction.
    Liu Q; Wu K; Cheng Y; Lu L; Xiao E; Zhang Y; Deng Z; Liu T
    Metab Eng; 2015 Mar; 28():82-90. PubMed ID: 25536488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.
    Yu P; Chen X; Li P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):606-619. PubMed ID: 27507087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol).
    Siripong W; Angela C; Tanapongpipat S; Runguphan W
    Enzyme Microb Technol; 2020 Aug; 138():109557. PubMed ID: 32527534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes.
    Makula R; Finnerty WR
    J Bacteriol; 1968 Jun; 95(6):2108-11. PubMed ID: 5669892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of alkenes and novel secondary products by P450 OleT
    Matthews S; Tee KL; Rattray NJ; McLean KJ; Leys D; Parker DA; Blankley RT; Munro AW
    FEBS Lett; 2017 Mar; 591(5):737-750. PubMed ID: 28144940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.
    Lu X
    Biotechnol Adv; 2010; 28(6):742-6. PubMed ID: 20561924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae.
    Kang MK; Zhou YJ; Buijs NA; Nielsen J
    Microb Cell Fact; 2017 May; 16(1):74. PubMed ID: 28464872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biology for microbial production of lipid-based biofuels.
    d'Espaux L; Mendez-Perez D; Li R; Keasling JD
    Curr Opin Chem Biol; 2015 Dec; 29():58-65. PubMed ID: 26479184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins.
    dos Santos TR; Harnisch F; Nilges P; Schröder U
    ChemSusChem; 2015 Mar; 8(5):886-93. PubMed ID: 25648972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway.
    Sorigué D; Légeret B; Cuiné S; Morales P; Mirabella B; Guédeney G; Li-Beisson Y; Jetter R; Peltier G; Beisson F
    Plant Physiol; 2016 Aug; 171(4):2393-405. PubMed ID: 27288359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.