These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29739207)

  • 1. Nascent energy distribution of the Criegee intermediate CH
    Pfeifle M; Ma YT; Jasper AW; Harding LB; Hase WL; Klippenstein SJ
    J Chem Phys; 2018 May; 148(17):174306. PubMed ID: 29739207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.
    Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in stabilisation of Criegee intermediates from alkene ozonolysis.
    Newland MJ; Nelson BS; Muñoz A; Ródenas M; Vera T; Tárrega J; Rickard AR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13698-13706. PubMed ID: 32525165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Carbon Chain Length on Nascent Yields of Stabilized Criegee Intermediates in Ozonolysis of a Series of Terminal Alkenes.
    Yang L; Zhang J
    J Am Chem Soc; 2024 Sep; 146(35):24591-24601. PubMed ID: 39169747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-pressure and nascent yields of stabilized Criegee intermediates CH
    Yang L; Campos-Pineda M; Hatem K; Zhang J
    Phys Chem Chem Phys; 2023 Oct; 25(39):26549-26556. PubMed ID: 37753576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.
    Jalan A; Allen JW; Green WH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16841-52. PubMed ID: 23958859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-transition state dynamics for propene ozonolysis: Intramolecular and unimolecular dynamics of molozonide.
    Vayner G; Addepalli SV; Song K; Hase WL
    J Chem Phys; 2006 Jul; 125(1):014317. PubMed ID: 16863308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH
    Sun C; Zhang S; Yue J; Zhang S
    J Phys Chem A; 2018 Nov; 122(44):8729-8737. PubMed ID: 30336026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH2OO.
    Lehman JH; Li H; Beames JM; Lester MI
    J Chem Phys; 2013 Oct; 139(14):141103. PubMed ID: 24116596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of gas-phase ozonolysis of sabinene in the atmosphere.
    Wang L; Wang L
    Phys Chem Chem Phys; 2017 Sep; 19(35):24209-24218. PubMed ID: 28848955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Computational Re-examination of the Criegee Intermediate-Sulfur Dioxide Reaction.
    Kuwata KT; Guinn EJ; Hermes MR; Fernandez JA; Mathison JM; Huang K
    J Phys Chem A; 2015 Oct; 119(41):10316-35. PubMed ID: 26397164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric Chemistry of Enols: The Formation Mechanisms of Formic and Peroxyformic Acids in Ozonolysis of Vinyl Alcohol.
    Lei X; Wang W; Gao J; Wang S; Wang W
    J Phys Chem A; 2020 May; 124(21):4271-4279. PubMed ID: 32369366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemistry of the Simplest Criegee Intermediate, CH
    Li Y; Gong Q; Yue L; Wang W; Liu F
    J Phys Chem Lett; 2018 Mar; 9(5):978-981. PubMed ID: 29420035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prompt release of O
    Vansco MF; Li H; Lester MI
    J Chem Phys; 2017 Jul; 147(1):013907. PubMed ID: 28688384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.