These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29739219)
1. Efficient propagation of the hierarchical equations of motion using the matrix product state method. Shi Q; Xu Y; Yan Y; Xu M J Chem Phys; 2018 May; 148(17):174102. PubMed ID: 29739219 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Bai S; Zhang S; Huang C; Shi Q Acc Chem Res; 2024 Oct; ():. PubMed ID: 39381954 [TBL] [Abstract][Full Text] [Related]
3. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. Yan Y; Xu M; Li T; Shi Q J Chem Phys; 2021 May; 154(19):194104. PubMed ID: 34240893 [TBL] [Abstract][Full Text] [Related]
4. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. Yan Y; Xing T; Shi Q J Chem Phys; 2020 Nov; 153(20):204109. PubMed ID: 33261494 [TBL] [Abstract][Full Text] [Related]
5. mpsqd: A matrix product state based Python package to simulate closed and open system quantum dynamics. Guan W; Bao P; Peng J; Lan Z; Shi Q J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39324531 [TBL] [Abstract][Full Text] [Related]
6. Tree tensor network state approach for solving hierarchical equations of motion. Ke Y J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259990 [TBL] [Abstract][Full Text] [Related]
7. Quantum rate dynamics for proton transfer reactions in condensed phase: the exact hierarchical equations of motion approach. Chen L; Shi Q J Chem Phys; 2009 Apr; 130(13):134505. PubMed ID: 19355749 [TBL] [Abstract][Full Text] [Related]
8. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. Liu H; Zhu L; Bai S; Shi Q J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779 [TBL] [Abstract][Full Text] [Related]
9. Calculation of correlated initial state in the hierarchical equations of motion method using an imaginary time path integral approach. Song L; Shi Q J Chem Phys; 2015 Nov; 143(19):194106. PubMed ID: 26590526 [TBL] [Abstract][Full Text] [Related]
10. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. Li T; Yan Y; Shi Q J Chem Phys; 2022 Feb; 156(6):064107. PubMed ID: 35168335 [TBL] [Abstract][Full Text] [Related]
11. Matrix product state formulation of the multiconfiguration time-dependent Hartree theory. Kurashige Y J Chem Phys; 2018 Nov; 149(19):194114. PubMed ID: 30466261 [TBL] [Abstract][Full Text] [Related]
12. Bexcitonics: Quasiparticle approach to open quantum dynamics. Chen X; Franco I J Chem Phys; 2024 May; 160(20):. PubMed ID: 38814013 [TBL] [Abstract][Full Text] [Related]
13. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM). Kramer T; Noack M; Reinefeld A; Rodríguez M; Zelinskyy Y J Comput Chem; 2018 Aug; 39(22):1779-1794. PubMed ID: 29888450 [TBL] [Abstract][Full Text] [Related]
14. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach. Jing Y; Chen L; Bai S; Shi Q J Chem Phys; 2013 Jan; 138(4):045101. PubMed ID: 23387623 [TBL] [Abstract][Full Text] [Related]
15. Exciton transfer using rates extracted from the "hierarchical equations of motion". Seibt J; Kühn O J Chem Phys; 2020 Nov; 153(19):194112. PubMed ID: 33218227 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of Coupled Electron-Boson Systems with the Multiple Davydov D Chen L; Borrelli R; Zhao Y J Phys Chem A; 2017 Nov; 121(46):8757-8770. PubMed ID: 29064239 [TBL] [Abstract][Full Text] [Related]
17. Convergence of high order perturbative expansions in open system quantum dynamics. Xu M; Song L; Song K; Shi Q J Chem Phys; 2017 Feb; 146(6):064102. PubMed ID: 28201895 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. Zhang HD; Cui L; Gong H; Xu RX; Zheng X; Yan Y J Chem Phys; 2020 Feb; 152(6):064107. PubMed ID: 32061227 [TBL] [Abstract][Full Text] [Related]
19. Explicit system-bath correlation calculated using the hierarchical equations of motion method. Zhu L; Liu H; Xie W; Shi Q J Chem Phys; 2012 Nov; 137(19):194106. PubMed ID: 23181293 [TBL] [Abstract][Full Text] [Related]
20. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. Tanimura Y J Chem Phys; 2014 Jul; 141(4):044114. PubMed ID: 25084888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]