BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

946 related articles for article (PubMed ID: 29739855)

  • 1. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J
    Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature EPR Spectroscopy as a Probe-Free Technique for Monitoring Oxidants Formed in Tumor Cells and Tissues: Implications in Drug Resistance and OXPHOS-Targeted Therapies.
    Kalyanaraman B; Cheng G; Zielonka J; Bennett B
    Cell Biochem Biophys; 2019 Mar; 77(1):89-98. PubMed ID: 30259334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
    James AM; Cochemé HM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(22):21295-312. PubMed ID: 15788391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.
    Hardy M; Zielonka J; Karoui H; Sikora A; Michalski R; Podsiadły R; Lopez M; Vasquez-Vivar J; Kalyanaraman B; Ouari O
    Antioxid Redox Signal; 2018 May; 28(15):1416-1432. PubMed ID: 29037049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling.
    Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J
    Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production.
    Mailloux RJ
    Redox Biol; 2021 Sep; 45():102044. PubMed ID: 34157640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
    Gvozdjáková A; Kucharská J; Kura B; Vančová O; Rausová Z; Sumbalová Z; Uličná O; Slezák J
    Can J Physiol Pharmacol; 2020 Jan; 98(1):29-34. PubMed ID: 31536712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in autoimmune rheumatic diseases.
    Smallwood MJ; Nissim A; Knight AR; Whiteman M; Haigh R; Winyard PG
    Free Radic Biol Med; 2018 Sep; 125():3-14. PubMed ID: 29859343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-optimized ROS balance: a unifying hypothesis.
    Aon MA; Cortassa S; O'Rourke B
    Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function.
    Stowe DF; Camara AK
    Antioxid Redox Signal; 2009 Jun; 11(6):1373-414. PubMed ID: 19187004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation.
    Malinska D; Kulawiak B; Kudin AP; Kovacs R; Huchzermeyer C; Kann O; Szewczyk A; Kunz WS
    Biochim Biophys Acta; 2010; 1797(6-7):1163-70. PubMed ID: 20211146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat.
    Armstrong JS; Whiteman M; Yang H; Jones DP
    Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species.
    Wu L; Sedgwick AC; Sun X; Bull SD; He XP; James TD
    Acc Chem Res; 2019 Sep; 52(9):2582-2597. PubMed ID: 31460742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.