These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29739879)
1. Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Romanov RA; Lasher RS; High B; Savidge LE; Lawson A; Rogachevskaja OA; Zhao H; Rogachevsky VV; Bystrova MF; Churbanov GD; Adameyko I; Harkany T; Yang R; Kidd GJ; Marambaud P; Kinnamon JC; Kolesnikov SS; Finger TE Sci Signal; 2018 May; 11(529):. PubMed ID: 29739879 [TBL] [Abstract][Full Text] [Related]
2. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. Taruno A; Matsumoto I; Ma Z; Marambaud P; Foskett JK Bioessays; 2013 Dec; 35(12):1111-8. PubMed ID: 24105910 [TBL] [Abstract][Full Text] [Related]
3. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Taruno A; Vingtdeux V; Ohmoto M; Ma Z; Dvoryanchikov G; Li A; Adrien L; Zhao H; Leung S; Abernethy M; Koppel J; Davies P; Civan MM; Chaudhari N; Matsumoto I; Hellekant G; Tordoff MG; Marambaud P; Foskett JK Nature; 2013 Mar; 495(7440):223-6. PubMed ID: 23467090 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds. Ikuta R; Kakinohana Y; Hamada S Chem Senses; 2024 Jan; 49():. PubMed ID: 38761122 [TBL] [Abstract][Full Text] [Related]
5. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells. Ma Z; Saung WT; Foskett JK J Neurophysiol; 2017 May; 117(5):1865-1876. PubMed ID: 28202574 [TBL] [Abstract][Full Text] [Related]
6. All-Electrical Ca Nomura K; Nakanishi M; Ishidate F; Iwata K; Taruno A Neuron; 2020 Jun; 106(5):816-829.e6. PubMed ID: 32229307 [TBL] [Abstract][Full Text] [Related]
7. Calcium homeostasis modulator (CALHM) ion channels. Ma Z; Tanis JE; Taruno A; Foskett JK Pflugers Arch; 2016 Mar; 468(3):395-403. PubMed ID: 26603282 [TBL] [Abstract][Full Text] [Related]
8. CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Kashio M; Wei-Qi G; Ohsaki Y; Kido MA; Taruno A Sci Rep; 2019 Feb; 9(1):2681. PubMed ID: 30804437 [TBL] [Abstract][Full Text] [Related]
9. CALHM3 Is Essential for Rapid Ion Channel-Mediated Purinergic Neurotransmission of GPCR-Mediated Tastes. Ma Z; Taruno A; Ohmoto M; Jyotaki M; Lim JC; Miyazaki H; Niisato N; Marunaka Y; Lee RJ; Hoff H; Payne R; Demuro A; Parker I; Mitchell CH; Henao-Mejia J; Tanis JE; Matsumoto I; Tordoff MG; Foskett JK Neuron; 2018 May; 98(3):547-561.e10. PubMed ID: 29681531 [TBL] [Abstract][Full Text] [Related]
10. Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel. Taruno A; Sun H; Nakajo K; Murakami T; Ohsaki Y; Kido MA; Ono F; Marunaka Y J Physiol; 2017 Sep; 595(18):6121-6145. PubMed ID: 28734079 [TBL] [Abstract][Full Text] [Related]
11. The Role of ATP and Purinergic Receptors in Taste Signaling. Kinnamon S; Finger T Handb Exp Pharmacol; 2022; 275():91-107. PubMed ID: 34435233 [TBL] [Abstract][Full Text] [Related]
12. Channel-mediated ATP release in the nervous system. Dale N; Butler J; Dospinescu VM; Nijjar S Neuropharmacology; 2023 Apr; 227():109435. PubMed ID: 36690324 [TBL] [Abstract][Full Text] [Related]
13. Purinergic neurotransmission in the gustatory system. Finger T; Kinnamon S Auton Neurosci; 2021 Dec; 236():102874. PubMed ID: 34536906 [TBL] [Abstract][Full Text] [Related]
14. Posttranslational regulation of CALHM1/3 channel: N-linked glycosylation and S-palmitoylation. Okui M; Murakami T; Sun H; Ikeshita C; Kanamura N; Taruno A FASEB J; 2021 May; 35(5):e21527. PubMed ID: 33788965 [TBL] [Abstract][Full Text] [Related]
15. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. Vandenbeuch A; Larson ED; Anderson CB; Smith SA; Ford AP; Finger TE; Kinnamon SC J Physiol; 2015 Mar; 593(5):1113-25. PubMed ID: 25524179 [TBL] [Abstract][Full Text] [Related]
16. Expression of P2Y1 receptors in rat taste buds. Kataoka S; Toyono T; Seta Y; Ogura T; Toyoshima K Histochem Cell Biol; 2004 May; 121(5):419-26. PubMed ID: 15103469 [TBL] [Abstract][Full Text] [Related]
17. Taste transduction and channel synapses in taste buds. Taruno A; Nomura K; Kusakizako T; Ma Z; Nureki O; Foskett JK Pflugers Arch; 2021 Jan; 473(1):3-13. PubMed ID: 32936320 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034 [TBL] [Abstract][Full Text] [Related]
19. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. Yang R; Stoick CL; Kinnamon JC J Comp Neurol; 2004 Mar; 471(1):59-71. PubMed ID: 14983476 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructure of mouse foliate taste buds: synaptic and nonsynaptic interactions between taste cells and nerve fibers. Royer SM; Kinnamon JC J Comp Neurol; 1988 Apr; 270(1):11-24, 58-9. PubMed ID: 3372732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]