These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 29739890)

  • 1. Specificity and robustness of long-distance connections in weighted, interareal connectomes.
    Betzel RF; Bassett DS
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4880-E4889. PubMed ID: 29739890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2017 Sep; 13(9):e1005776. PubMed ID: 28961235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints and spandrels of interareal connectomes.
    Rubinov M
    Nat Commun; 2016 Dec; 7():13812. PubMed ID: 27924867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates.
    Horvát S; Gămănuț R; Ercsey-Ravasz M; Magrou L; Gămănuț B; Van Essen DC; Burkhalter A; Knoblauch K; Toroczkai Z; Kennedy H
    PLoS Biol; 2016 Jul; 14(7):e1002512. PubMed ID: 27441598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum Entropy Principle Underlies Wiring Length Distribution in Brain Networks.
    Song Y; Zhou D; Li S
    Cereb Cortex; 2021 Aug; 31(10):4628-4641. PubMed ID: 33999124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial embedding of structural similarity in the cerebral cortex.
    Song HF; Kennedy H; Wang XJ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16580-5. PubMed ID: 25368200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal ontogeny of brain wiring.
    Goulas A; Betzel RF; Hilgetag CC
    Sci Adv; 2019 Jun; 5(6):eaav9694. PubMed ID: 31206020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring neural signalling directionality from undirected structural connectomes.
    Seguin C; Razi A; Zalesky A
    Nat Commun; 2019 Sep; 10(1):4289. PubMed ID: 31537787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why data coherence and quality is critical for understanding interareal cortical networks.
    Kennedy H; Knoblauch K; Toroczkai Z
    Neuroimage; 2013 Oct; 80():37-45. PubMed ID: 23603347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.
    Haimovici A; Balenzuela P; Tagliazucchi E
    Brain Connect; 2016 Dec; 6(10):759-771. PubMed ID: 27758115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-independent community and hub structure of functional brain networks.
    Zamani Esfahlani F; Bertolero MA; Bassett DS; Betzel RF
    Neuroimage; 2020 May; 211():116612. PubMed ID: 32061801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Navigation of brain networks.
    Seguin C; van den Heuvel MP; Zalesky A
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6297-6302. PubMed ID: 29848631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of long-range connections on the specificity of the macaque interareal cortical network.
    Markov NT; Ercsey-Ravasz M; Lamy C; Ribeiro Gomes AR; Magrou L; Misery P; Giroud P; Barone P; Dehay C; Toroczkai Z; Knoblauch K; Van Essen DC; Kennedy H
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5187-92. PubMed ID: 23479610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs.
    Zamora-López G; Chen Y; Deco G; Kringelbach ML; Zhou C
    Sci Rep; 2016 Dec; 6():38424. PubMed ID: 27917958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.
    Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM
    Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale connectomics.
    Zeng H
    Curr Opin Neurobiol; 2018 Jun; 50():154-162. PubMed ID: 29579713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.
    Schmidt R; LaFleur KJ; de Reus MA; van den Berg LH; van den Heuvel MP
    BMC Neurosci; 2015 Sep; 16():54. PubMed ID: 26329640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human connectome: a complex network.
    Sporns O
    Ann N Y Acad Sci; 2011 Apr; 1224():109-125. PubMed ID: 21251014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey.
    Donahue CJ; Sotiropoulos SN; Jbabdi S; Hernandez-Fernandez M; Behrens TE; Dyrby TB; Coalson T; Kennedy H; Knoblauch K; Van Essen DC; Glasser MF
    J Neurosci; 2016 Jun; 36(25):6758-70. PubMed ID: 27335406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse.
    Ypma RJ; Bullmore ET
    PLoS Comput Biol; 2016 Sep; 12(9):e1005104. PubMed ID: 27617835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.