These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29739924)

  • 1. Enhanced electrocaloric efficiency via energy recovery.
    Defay E; Faye R; Despesse G; Strozyk H; Sette D; Crossley S; Moya X; Mathur ND
    Nat Commun; 2018 May; 9(1):1827. PubMed ID: 29739924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range.
    Nair B; Usui T; Crossley S; Kurdi S; Guzmán-Verri GG; Moya X; Hirose S; Mathur ND
    Nature; 2019 Nov; 575(7783):468-472. PubMed ID: 31597164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state cooling line based on the electrocaloric effect.
    Khodayari A; Mohammadi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):503-8. PubMed ID: 21429842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic.
    Merselmiz S; Hanani Z; Mezzane D; Razumnaya AG; Amjoud M; Hajji L; Terenchuk S; Rožič B; Luk'yanchuk IA; Kutnjak Z
    RSC Adv; 2021 Mar; 11(16):9459-9468. PubMed ID: 35423414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate.
    Nouchokgwe Y; Lheritier P; Hong CH; Torelló A; Faye R; Jo W; Bahl CRH; Defay E
    Nat Commun; 2021 Jun; 12(1):3298. PubMed ID: 34078891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface-Charge Induced Giant Electrocaloric Effect in Lead Free Ferroelectric Thin-Film Bilayers.
    Shirsath SE; Cazorla C; Lu T; Zhang L; Tay YY; Lou X; Liu Y; Li S; Wang D
    Nano Lett; 2020 Feb; 20(2):1262-1271. PubMed ID: 31877053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration.
    Li MD; Shen XQ; Chen X; Gan JM; Wang F; Li J; Wang XL; Shen QD
    Nat Commun; 2022 Oct; 13(1):5849. PubMed ID: 36195612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal metric for ferroic energy materials.
    Brück E; Yibole H; Zhang L
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient electrocaloric cooling with electrostatic actuation.
    Ma R; Zhang Z; Tong K; Huber D; Kornbluh R; Ju YS; Pei Q
    Science; 2017 Sep; 357(6356):1130-1134. PubMed ID: 28912240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant temperature span in electrocaloric regenerator.
    Torelló A; Lheritier P; Usui T; Nouchokgwe Y; Gérard M; Bouton O; Hirose S; Defay E
    Science; 2020 Oct; 370(6512):125-129. PubMed ID: 33004522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkably Enhanced Negative Electrocaloric Effect in PbZrO
    Wu M; Song D; Guo M; Bian J; Li J; Yang Y; Huang H; Pennycook SJ; Lou X
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36863-36870. PubMed ID: 31525289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant electrocaloric response in smectic liquid crystals with direct smectic-isotropic transition.
    Klemenčič E; Trček M; Kutnjak Z; Kralj S
    Sci Rep; 2019 Feb; 9(1):1721. PubMed ID: 30742022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Magneto)caloric refrigeration: is there light at the end of the tunnel?
    Pecharsky VK; Cui J; Johnson DD
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device.
    Hou H; Finkel P; Staruch M; Cui J; Takeuchi I
    Nat Commun; 2018 Oct; 9(1):4075. PubMed ID: 30287833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caloric materials for cooling and heating.
    Moya X; Mathur ND
    Science; 2020 Nov; 370(6518):797-803. PubMed ID: 33184207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.
    Zhang TF; Huang XX; Tang XG; Jiang YP; Liu QX; Lu B; Lu SG
    Sci Rep; 2018 Jan; 8(1):396. PubMed ID: 29321638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Electrocaloric Effect and Ultrahigh Refrigeration Efficiency in Antiferroelectric Ceramics by Morphotropic Phase Boundary Design.
    Li J; Li J; Wu HH; Qin S; Su X; Wang Y; Lou X; Guo D; Su Y; Qiao L; Bai Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45005-45014. PubMed ID: 32924421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caloric materials near ferroic phase transitions.
    Moya X; Kar-Narayan S; Mathur ND
    Nat Mater; 2014 May; 13(5):439-50. PubMed ID: 24751772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocaloric Performance of Multilayer Ceramic Chips: Effect of Geometric Structure Induced Internal Stress.
    Cheng LQ; Yan Y; Li X; Xiong X; Chen X; Zhu LF; Li W; Chen K; Sanghadasa M; Priya S
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38508-38516. PubMed ID: 34351756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-performance solid-state electrocaloric cooling system.
    Wang Y; Zhang Z; Usui T; Benedict M; Hirose S; Lee J; Kalb J; Schwartz D
    Science; 2020 Oct; 370(6512):129-133. PubMed ID: 33004523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.