BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29739951)

  • 1. Bioelectrochemical conversion of CO
    Jang J; Jeon BW; Kim YH
    Sci Rep; 2018 May; 8(1):7211. PubMed ID: 29739951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.
    Chistoserdova L; Crowther GJ; Vorholt JA; Skovran E; Portais JC; Lidstrom ME
    J Bacteriol; 2007 Dec; 189(24):9076-81. PubMed ID: 17921299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol.
    Chistoserdova L; Laukel M; Portais JC; Vorholt JA; Lidstrom ME
    J Bacteriol; 2004 Jan; 186(1):22-8. PubMed ID: 14679220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of recombinant formate dehydrogenase from Methylobacterium extorquens (MeFDH1).
    Park J; Heo Y; Jeon BW; Jung M; Kim YH; Lee HH; Roh SH
    Sci Rep; 2024 Feb; 14(1):3819. PubMed ID: 38360844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial engineering of Methylorubrum extorquens AM1 to enhance CO
    Phan UT; Jeon BW; Kim YH
    Enzyme Microb Technol; 2023 Aug; 168():110264. PubMed ID: 37244213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.
    Schmidt S; Christen P; Kiefer P; Vorholt JA
    Microbiology (Reading); 2010 Aug; 156(Pt 8):2575-2586. PubMed ID: 20447995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1.
    Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M
    ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1.
    Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC
    Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium formate redirects carbon flux and enhances heterologous mevalonate production in Methylobacterium extorquens AM1.
    Cui LY; Yang J; Liang WF; Yang S; Zhang C; Xing XH
    Biotechnol J; 2023 Feb; 18(2):e2200402. PubMed ID: 36424513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties.
    Laukel M; Chistoserdova L; Lidstrom ME; Vorholt JA
    Eur J Biochem; 2003 Jan; 270(2):325-33. PubMed ID: 12605683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical properties and crystal structure of formate-tetrahydrofolate ligase from Methylobacterium extorquens CM4.
    Kim S; Lee SH; Seo H; Kim KJ
    Biochem Biophys Res Commun; 2020 Jul; 528(3):426-431. PubMed ID: 32505353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1.
    Schada von Borzyskowski L; Carrillo M; Leupold S; Glatter T; Kiefer P; Weishaupt R; Heinemann M; Erb TJ
    Metab Eng; 2018 May; 47():423-433. PubMed ID: 29625224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.
    Fu Y; Beck DA; Lidstrom ME
    BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst.
    Hwang H; Yeon YJ; Lee S; Choe H; Jang MG; Cho DH; Park S; Kim YH
    Bioresour Technol; 2015 Jun; 185():35-9. PubMed ID: 25746476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate production through biocatalysis.
    Alissandratos A; Kim HK; Easton CJ
    Bioengineered; 2013; 4(5):348-50. PubMed ID: 23841981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assimilation of formic acid and CO
    Bang J; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9271-E9279. PubMed ID: 30224468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
    Witthoff S; Mühlroth A; Marienhagen J; Bott M
    Appl Environ Microbiol; 2013 Nov; 79(22):6974-83. PubMed ID: 24014532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth.
    Marx CJ; Laukel M; Vorholt JA; Lidstrom ME
    J Bacteriol; 2003 Dec; 185(24):7169-75. PubMed ID: 14645277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.