These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 29740011)
1. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction. Wang J; Yang H Sci Rep; 2018 May; 8(1):7155. PubMed ID: 29740011 [TBL] [Abstract][Full Text] [Related]
2. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction. Wang J; He H; Cooper RC; Yang H ACS Appl Mater Interfaces; 2017 Mar; 9(12):10494-10503. PubMed ID: 28263553 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
4. Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Dispinar T; Van Camp W; De Cock LJ; De Geest BG; Du Prez FE Macromol Biosci; 2012 Mar; 12(3):383-94. PubMed ID: 22223302 [TBL] [Abstract][Full Text] [Related]
5. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. Pacelli S; Di Muzio L; Paolicelli P; Fortunati V; Petralito S; Trilli J; Casadei MA Int J Biol Macromol; 2021 Jan; 166():1292-1300. PubMed ID: 33161086 [TBL] [Abstract][Full Text] [Related]
6. Polyamidoamine Dendrimer Microgels: Hierarchical Arrangement of Dendrimers into Micrometer Domains with Expanded Structural Features for Programmable Drug Delivery and Release. Wang J; Cooper RC; He H; Li B; Yang H Macromolecules; 2018 Aug; 51(15):6111-6118. PubMed ID: 30705466 [TBL] [Abstract][Full Text] [Related]
7. Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Bratskaya S; Privar Y; Nesterov D; Modin E; Kodess M; Slobodyuk A; Marinin D; Pestov A Biomacromolecules; 2019 Apr; 20(4):1635-1643. PubMed ID: 30726063 [TBL] [Abstract][Full Text] [Related]
8. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulations of polyamidoamine dendrimers and their complexes with linear poly(ethylene oxide) at different pH conditions: static properties and hydrogen bonding. Tanis I; Karatasos K Phys Chem Chem Phys; 2009 Nov; 11(43):10017-28. PubMed ID: 19865754 [TBL] [Abstract][Full Text] [Related]
11. Solubility of nicotinic acid in polyamidoamine dendrimer solutions. Yiyun C; Tongwen X Eur J Med Chem; 2005 Dec; 40(12):1384-9. PubMed ID: 16226352 [TBL] [Abstract][Full Text] [Related]
12. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Kim Y; Klutz AM; Jacobson KA Bioconjug Chem; 2008 Aug; 19(8):1660-72. PubMed ID: 18610944 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale protein pores modified with PAMAM dendrimers. Martin H; Kinns H; Mitchell N; Astier Y; Madathil R; Howorka S J Am Chem Soc; 2007 Aug; 129(31):9640-9. PubMed ID: 17636906 [TBL] [Abstract][Full Text] [Related]
14. Bundling and aggregation of DNA by cationic dendrimers. Froehlich E; Mandeville JS; Weinert CM; Kreplak L; Tajmir-Riahi HA Biomacromolecules; 2011 Feb; 12(2):511-7. PubMed ID: 21192723 [TBL] [Abstract][Full Text] [Related]
15. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. He X; Alves CS; Oliveira N; Rodrigues J; Zhu J; Bányai I; Tomás H; Shi X Colloids Surf B Biointerfaces; 2015 Jan; 125():82-9. PubMed ID: 25437067 [TBL] [Abstract][Full Text] [Related]
16. PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Yuan Q; Yeudall WA; Yang H Biomacromolecules; 2010 Aug; 11(8):1940-7. PubMed ID: 20593893 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional cryogels for biomedical applications. Razavi M; Qiao Y; Thakor AS J Biomed Mater Res A; 2019 Dec; 107(12):2736-2755. PubMed ID: 31408265 [TBL] [Abstract][Full Text] [Related]
18. Macroporous starPEG-heparin cryogels. Welzel PB; Grimmer M; Renneberg C; Naujox L; Zschoche S; Freudenberg U; Werner C Biomacromolecules; 2012 Aug; 13(8):2349-58. PubMed ID: 22758219 [TBL] [Abstract][Full Text] [Related]
19. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization. Chambre L; Maouati H; Oz Y; Sanyal R; Sanyal A Bioconjug Chem; 2020 Sep; 31(9):2116-2124. PubMed ID: 32786374 [TBL] [Abstract][Full Text] [Related]
20. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. Calik F; Degirmenci A; Maouati H; Sanyal R; Sanyal A ACS Biomater Sci Eng; 2024 May; 10(5):3017-3028. PubMed ID: 38655791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]