These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29740071)

  • 1. Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration.
    Nisal A; Sayyad R; Dhavale P; Khude B; Deshpande R; Mapare V; Shukla S; Venugopalan P
    Sci Rep; 2018 May; 8(1):7235. PubMed ID: 29740071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk fibroin-based scaffolds for bone regeneration.
    Kuboyama N; Kiba H; Arai K; Uchida R; Tanimoto Y; Bhawal UK; Abiko Y; Miyamoto S; Knight D; Asakura T; Nishiyama N
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):295-302. PubMed ID: 23125151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts.
    Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L
    Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration.
    Liu B; Gao X; Sun Z; Fang Q; Geng X; Zhang H; Wang G; Dou Y; Hu P; Zhu K; Wang D; Xing J; Liu D; Zhang M; Li R
    J Mater Sci Mater Med; 2018 Dec; 30(1):4. PubMed ID: 30569403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S; Meesane J; Kamonmattayakul S; Chai WL
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y; Rudym DD; Walsh A; Abrahamsen L; Kim HJ; Kim HS; Kirker-Head C; Kaplan DL
    Biomaterials; 2008; 29(24-25):3415-28. PubMed ID: 18502501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.
    Yan LP; Silva-Correia J; Correia C; Caridade SG; Fernandes EM; Sousa RA; Mano JF; Oliveira JM; Oliveira AL; Reis RL
    Nanomedicine (Lond); 2013 Mar; 8(3):359-78. PubMed ID: 23259755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation.
    Cengiz IF; Pereira H; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    J Mater Sci Mater Med; 2019 May; 30(6):63. PubMed ID: 31127379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.