These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29740071)
21. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
22. In vivo evaluation of modified silk fibroin scaffolds with a mimicked microenvironment of fibronectin/decellularized pulp tissue for maxillofacial surgery. Thai TH; Nuntanaranont T; Kamolmatyakul S; Meesane J Biomed Mater; 2017 Nov; 13(1):015009. PubMed ID: 29165324 [TBL] [Abstract][Full Text] [Related]
23. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
24. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms. You R; Xu Y; Liu Y; Li X; Li M Biomed Mater; 2014 Dec; 10(1):015003. PubMed ID: 25532470 [TBL] [Abstract][Full Text] [Related]
25. Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation. Wang SD; Ma Q; Wang K; Ma PB Int J Biol Macromol; 2018 May; 111():237-246. PubMed ID: 29320721 [TBL] [Abstract][Full Text] [Related]
26. Electrospun scaffolds from silk fibroin and their cellular compatibility. Zhang K; Mo X; Huang C; He C; Wang H J Biomed Mater Res A; 2010 Jun; 93(3):976-83. PubMed ID: 19722283 [TBL] [Abstract][Full Text] [Related]
27. Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Naskar D; Ghosh AK; Mandal M; Das P; Nandi SK; Kundu SC Biomaterials; 2017 Aug; 136():67-85. PubMed ID: 28521202 [TBL] [Abstract][Full Text] [Related]
28. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
29. Bombyx mori silk fibroin scaffolds for bone regeneration studied by bone differentiation experiment. Miyamoto S; Koyanagi R; Nakazawa Y; Nagano A; Abiko Y; Inada M; Miyaura C; Asakura T J Biosci Bioeng; 2013 May; 115(5):575-8. PubMed ID: 23287495 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Kim UJ; Park J; Kim HJ; Wada M; Kaplan DL Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282 [TBL] [Abstract][Full Text] [Related]
31. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
32. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA; Lim J; Naren R; Yun HS; Park EK Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019 [TBL] [Abstract][Full Text] [Related]
33. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
34. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441 [TBL] [Abstract][Full Text] [Related]
35. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837 [TBL] [Abstract][Full Text] [Related]
36. Fabrication and characterization of porous tubular silk fibroin scaffolds. Min S; Gao X; Liu L; Tian L; Zhu L; Zhang H; Yao J J Biomater Sci Polym Ed; 2009; 20(13):1961-74. PubMed ID: 19793450 [TBL] [Abstract][Full Text] [Related]
37. A flexible and biocompatible bombyx mori silk fibroin/wool keratin composite scaffold with interconnective porous structure. Tian Y; Wu Q; Li F; Zhou Y; Huang D; Xie R; Wang X; Zheng Z; Li G Colloids Surf B Biointerfaces; 2021 Dec; 208():112080. PubMed ID: 34481247 [TBL] [Abstract][Full Text] [Related]
38. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Yang M; Shuai Y; He W; Min S; Zhu L Int J Mol Sci; 2012; 13(6):7762-7775. PubMed ID: 22837725 [TBL] [Abstract][Full Text] [Related]
39. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]