BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29740123)

  • 1. Influence of Surface Roughness on Strong Light-Matter Interaction of a Quantum Emitter-Metallic Nanoparticle System.
    Lu YW; Li LY; Liu JF
    Sci Rep; 2018 May; 8(1):7115. PubMed ID: 29740123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film.
    Cao S; Xing Y; Sun Y; Liu Z; He S
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle.
    Thanopulos I; Yannopapas V; Paspalakis E
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green's functions.
    Yu YC; Liu JF; Zhuo XL; Chen G; Jin CJ; Wang XH
    Opt Express; 2013 Oct; 21(20):23486-97. PubMed ID: 24104262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
    Santhosh K; Bitton O; Chuntonov L; Haran G
    Nat Commun; 2016 Jun; 7():ncomms11823. PubMed ID: 27293116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong coupling between monolayer quantum emitter WS
    Lv F; Wang Z; Huang Y; Chen J; La J; Wu D; Guo Z; Liu Y; Zhang Y; Wang Y; Wang W
    Opt Lett; 2022 Jan; 47(1):190-193. PubMed ID: 34951914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function.
    Chen YP; Sha WE; Choy WC; Jiang L; Chew WC
    Opt Express; 2012 Aug; 20(18):20210-21. PubMed ID: 23037073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling.
    Rossi TP; Shegai T; Erhart P; Antosiewicz TJ
    Nat Commun; 2019 Jul; 10(1):3336. PubMed ID: 31350397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2009 Jun; 20(22):225401. PubMed ID: 19436085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pump-Probe Optical Response and Four-Wave Mixing in a Zinc-Phthalocyanine-Metal Nanoparticle Hybrid System.
    Domenikou N; Kosionis SG; Thanopulos I; Yannopapas V; Paspalakis E
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas.
    Pfeiffer M; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M; Lindfors K
    Sci Rep; 2018 Feb; 8(1):3415. PubMed ID: 29467499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power flow from a dipole emitter near an optical antenna.
    Huang KC; Jun YC; Seo MK; Brongersma ML
    Opt Express; 2011 Sep; 19(20):19084-92. PubMed ID: 21996849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructure-Induced Distortion in Single-Emitter Microscopy.
    Lim K; Ropp C; Barik S; Fourkas J; Shapiro B; Waks E
    Nano Lett; 2016 Sep; 16(9):5415-9. PubMed ID: 27552289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film.
    Geshev PI; Fischer UC; Fuchs H
    Opt Express; 2007 Oct; 15(21):13796-804. PubMed ID: 19550650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide.
    Sokhoyan R; Atwater HA
    Opt Express; 2013 Dec; 21(26):32279-90. PubMed ID: 24514821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.