These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29740164)

  • 1. Systematic realization of double-zero-index phononic crystals with hard inclusions.
    Hyun J; Choi W; Wang S; Park CS; Kim M
    Sci Rep; 2018 May; 8(1):7288. PubMed ID: 29740164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dirac cones with zero refractive indices in phoxonic crystals.
    Lei L; Yu T; Liu W; Wang T; Liao Q
    Opt Express; 2022 Jan; 30(1):308-317. PubMed ID: 35201209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicoaxial cylindrical inclusions in locally resonant phononic crystals.
    Larabi H; Pennec Y; Djafari-Rouhani B; Vasseur JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066601. PubMed ID: 17677370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft phononic crystals with deformation-independent band gaps.
    Zhang P; Parnell WJ
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160865. PubMed ID: 28484331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation.
    Assouar BM; Vincent B; Moubchir H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):273-8. PubMed ID: 18334333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.
    Huang X; Lai Y; Hang ZH; Zheng H; Chan CT
    Nat Mater; 2011 May; 10(8):582-6. PubMed ID: 21623377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D phononic crystals with ultra-wide band gaps.
    Lu Y; Yang Y; Guest JK; Srivastava A
    Sci Rep; 2017 Feb; 7():43407. PubMed ID: 28233812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Realization of Type-II Weyl Points and Fermi Arcs in Phononic Crystal.
    Xie B; Liu H; Cheng H; Liu Z; Chen S; Tian J
    Phys Rev Lett; 2019 Mar; 122(10):104302. PubMed ID: 30932672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioned gradient-index phononic crystals for full phase control.
    Hyun J; Kim M; Choi W
    Sci Rep; 2020 Sep; 10(1):14630. PubMed ID: 32884002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.
    Lee JS; Yoo S; Ahn YK; Kim YY
    J Acoust Soc Am; 2015 Sep; 138(3):EL217-22. PubMed ID: 26428816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.
    Ash BJ; Worsfold SR; Vukusic P; Nash GR
    Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization.
    Chen Y; Guo D; Li YF; Li G; Huang X
    Ultrasonics; 2019 Apr; 94():419-429. PubMed ID: 30001853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band structure analysis of phononic crystals based on the Chebyshev interval method.
    Lei JR; Xie LX; Liu J
    J Acoust Soc Am; 2017 Nov; 142(5):3234. PubMed ID: 29195436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing uniaxial tension to tune Poisson's ratio and wave propagation in soft porous phononic crystals: an experimental study.
    Gao N; Li J; Bao RH; Chen WQ
    Soft Matter; 2019 Apr; 15(14):2921-2927. PubMed ID: 30694287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
    Dong HW; Wang YS; Zhang C
    Ultrasonics; 2017 Apr; 76():109-124. PubMed ID: 28086106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-frequency and slow elastic modes in phononic monolayer granular membranes.
    Zheng LY; Pichard H; Tournat V; Theocharis G; Gusev V
    Ultrasonics; 2016 Jul; 69():201-14. PubMed ID: 26607105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of Complex 3D Phononic Crystals with Wide Complete Acoustic Band Gaps.
    Lucklum F; Vellekoop M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):796-767. PubMed ID: 27008667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Design of Colloidal Crystals via Optimized Patchy Interactions.
    Chen D; Zhang G; Torquato S
    J Phys Chem B; 2018 Sep; 122(35):8462-8468. PubMed ID: 30088925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological Design of Cellular Phononic Band Gap Crystals.
    Li YF; Huang X; Zhou S
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.