BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29740315)

  • 1. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.
    Agarwal SR; Gratwohl J; Cozad M; Yang PC; Clancy CE; Harvey RD
    Front Pharmacol; 2018; 9():332. PubMed ID: 29740315
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of membrane microdomains in compartmentation of cAMP signaling.
    Agarwal SR; Yang PC; Rice M; Singer CA; Nikolaev VO; Lohse MJ; Clancy CE; Harvey RD
    PLoS One; 2014; 9(4):e95835. PubMed ID: 24752595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized cAMP responses to prostaglandin EP
    Agarwal SR; Miyashiro K; Latt H; Ostrom RS; Harvey RD
    Br J Pharmacol; 2017 Aug; 174(16):2784-2796. PubMed ID: 28603838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes.
    Agarwal SR; MacDougall DA; Tyser R; Pugh SD; Calaghan SC; Harvey RD
    J Mol Cell Cardiol; 2011 Mar; 50(3):500-9. PubMed ID: 21115018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by
    Agarwal SR; Fiore C; Miyashiro K; Ostrom RS; Harvey RD
    J Pharmacol Exp Ther; 2019 Jul; 370(1):104-110. PubMed ID: 31068382
    [No Abstract]   [Full Text] [Related]  

  • 6. Cardiac Hypertrophy Changes Compartmentation of cAMP in Non-Raft Membrane Microdomains.
    Pavlaki N; De Jong KA; Geertz B; Nikolaev VO; Froese A
    Cells; 2021 Mar; 10(3):. PubMed ID: 33802377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic cAMP concentrations in intact cardiac myocytes.
    Iancu RV; Ramamurthy G; Warrier S; Nikolaev VO; Lohse MJ; Jones SW; Harvey RD
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C414-22. PubMed ID: 18550706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function.
    Lukyanenko YO; Younes A; Lyashkov AE; Tarasov KV; Riordon DR; Lee J; Sirenko SG; Kobrinsky E; Ziman B; Tarasova YS; Juhaszova M; Sollott SJ; Graham DR; Lakatta EG
    J Mol Cell Cardiol; 2016 Sep; 98():73-82. PubMed ID: 27363295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes.
    Warrier S; Ramamurthy G; Eckert RL; Nikolaev VO; Lohse MJ; Harvey RD
    J Physiol; 2007 May; 580(Pt.3):765-76. PubMed ID: 17289786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of PKA activity in plasma membrane microdomains.
    Depry C; Allen MD; Zhang J
    Mol Biosyst; 2011 Jan; 7(1):52-8. PubMed ID: 20838685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics.
    DiPilato LM; Zhang J
    Mol Biosyst; 2009 Aug; 5(8):832-7. PubMed ID: 19603118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid raft compartmentalization of urokinase receptor signaling in human neutrophils.
    Sitrin RG; Johnson DR; Pan PM; Harsh DM; Huang J; Petty HR; Blackwood RA
    Am J Respir Cell Mol Biol; 2004 Feb; 30(2):233-41. PubMed ID: 12933356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.
    Huang SS; Chen CL; Huang FW; Johnson FE; Huang JS
    J Cell Biochem; 2016 Apr; 117(4):860-71. PubMed ID: 26419316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.
    Perera RK; Sprenger JU; Steinbrecher JH; Hübscher D; Lehnart SE; Abesser M; Schuh K; El-Armouche A; Nikolaev VO
    Circ Res; 2015 Apr; 116(8):1304-11. PubMed ID: 25688144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentation of cAMP signaling in cardiac myocytes: a computational study.
    Iancu RV; Jones SW; Harvey RD
    Biophys J; 2007 May; 92(9):3317-31. PubMed ID: 17293406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling.
    Nikolaev VO; Bünemann M; Schmitteckert E; Lohse MJ; Engelhardt S
    Circ Res; 2006 Nov; 99(10):1084-91. PubMed ID: 17038640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Calcium Fluctuations during Cardiomyocyte Contraction with Real-Time cAMP Dynamics Detected by FRET.
    Sprenger JU; Bork NI; Herting J; Fischer TH; Nikolaev VO
    PLoS One; 2016; 11(12):e0167974. PubMed ID: 27930744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex.
    Hejnova L; Skrabalova J; Novotny J
    J Mol Neurosci; 2017 Dec; 63(3-4):364-376. PubMed ID: 29081032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.