These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29740392)

  • 1. Anti-Saccades in Cerebellar Ataxias Reveal a Contribution of the Cerebellum in Executive Functions.
    Pretegiani E; Piu P; Rosini F; Federighi P; Serchi V; Tumminelli G; Dotti MT; Federico A; Rufa A
    Front Neurol; 2018; 9():274. PubMed ID: 29740392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias.
    Federighi P; Cevenini G; Dotti MT; Rosini F; Pretegiani E; Federico A; Rufa A
    Brain; 2011 Mar; 134(Pt 3):879-91. PubMed ID: 21354979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficits of cortical oculomotor mechanisms in cerebellar atrophy patients.
    Filippopulos F; Eggert T; Straube A
    Exp Brain Res; 2013 Feb; 224(4):541-50. PubMed ID: 23161158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal saccade profiles in hereditary spinocerebellar degeneration reveal cerebellar contribution to visually guided saccades.
    Inomata-Terada S; Fukuda H; Tokushige SI; Matsuda SI; Hamada M; Ugawa Y; Tsuji S; Terao Y
    Clin Neurophysiol; 2023 Oct; 154():70-84. PubMed ID: 37572405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of dentate nuclei in human oculomotor control: insights from cerebrotendinous xanthomatosis.
    Rosini F; Pretegiani E; Mignarri A; Optican LM; Serchi V; De Stefano N; Battaglini M; Monti L; Dotti MT; Federico A; Rufa A
    J Physiol; 2017 Jun; 595(11):3607-3620. PubMed ID: 28168705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of Lateral Cerebellum in Proactive Control of Saccades.
    Kunimatsu J; Suzuki TW; Tanaka M
    J Neurosci; 2016 Jun; 36(26):7066-74. PubMed ID: 27358462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades.
    Panouillères M; Alahyane N; Urquizar C; Salemme R; Nighoghossian N; Gaymard B; Tilikete C; Pélisson D
    Exp Brain Res; 2013 Nov; 231(1):1-11. PubMed ID: 23963603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cerebellar infarcts on cortical processing of saccades.
    Filippopulos F; Eggert T; Straube A
    J Neurol; 2013 Mar; 260(3):805-14. PubMed ID: 23086179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cerebellum improves the precision of antisaccades by a latency-duration trade-off.
    Piu P; Pretegiani E; Rosini F; Serchi V; Zaino D; Chiantini T; Rufa A
    Prog Brain Res; 2019; 249():125-139. PubMed ID: 31325973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement.
    Hocking DR; Corben LA; Fielding J; Cremer PD; Millist L; White OB; Delatycki MB
    Brain Cogn; 2014 Jun; 87():161-7. PubMed ID: 24752035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades.
    Alahyane N; Fonteille V; Urquizar C; Salemme R; Nighoghossian N; Pelisson D; Tilikete C
    Cerebellum; 2008; 7(4):595-601. PubMed ID: 19009327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques.
    Avila E; Flierman NA; Holland PJ; Roelfsema PR; Frens MA; Badura A; De Zeeuw CI
    Front Cell Neurosci; 2022; 16():863181. PubMed ID: 35573834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prodromal Alzheimer's Disease Demonstrates Increased Errors at a Simple and Automated Anti-Saccade Task.
    Holden JG; Cosnard A; Laurens B; Asselineau J; Biotti D; Cubizolle S; Dupouy S; Formaglio M; Koric L; Seassau M; Tilikete C; Vighetto A; Tison F
    J Alzheimers Dis; 2018; 65(4):1209-1223. PubMed ID: 30149445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflexive and Intentional Saccadic Eye Movements in Migraineurs.
    Filippopulos FM; Goeschy C; Schoeberl F; Eren OE; Straube A; Eggert T
    Front Neurol; 2021; 12():669922. PubMed ID: 33897613
    [No Abstract]   [Full Text] [Related]  

  • 15. Saccade-related Purkinje cells in the cerebellar hemispheres of the monkey.
    Mano N; Ito Y; Shibutani H
    Exp Brain Res; 1991; 84(3):465-70. PubMed ID: 1864319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2.
    Olivito G; Lupo M; Iacobacci C; Clausi S; Romano S; Masciullo M; Molinari M; Cercignani M; Bozzali M; Leggio M
    J Neurol; 2018 Mar; 265(3):597-606. PubMed ID: 29356974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing spinocerebellar ataxia with pure cerebellar manifestation from multiple system atrophy (MSA-C) through saccade profiles.
    Terao Y; Fukuda H; Tokushige SI; Inomata-Terada S; Yugeta A; Hamada M; Ugawa Y
    Clin Neurophysiol; 2017 Jan; 128(1):31-43. PubMed ID: 27866117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17).
    Hübner J; Sprenger A; Klein C; Hagenah J; Rambold H; Zühlke C; Kömpf D; Rolfs A; Kimmig H; Helmchen C
    Neurology; 2007 Sep; 69(11):1160-8. PubMed ID: 17846415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is multiple system atrophy with cerebellar ataxia (MSA-C) like spinocerebellar ataxia and multiple system atrophy with parkinsonism (MSA-P) like Parkinson's disease? - A saccade study on pathophysiology.
    Terao Y; Fukuda H; Tokushige S; Inomata-Terada S; Yugeta A; Hamada M; Ichikawa Y; Hanajima R; Ugawa Y
    Clin Neurophysiol; 2016 Feb; 127(2):1491-1502. PubMed ID: 26350408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atrophic degeneration of cerebellum impairs both the reactive and the proactive control of movement in the stop signal paradigm.
    Olivito G; Brunamonti E; Clausi S; Pani P; Chiricozzi FR; Giamundo M; Molinari M; Leggio M; Ferraina S
    Exp Brain Res; 2017 Oct; 235(10):2971-2981. PubMed ID: 28717819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.