BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29740712)

  • 1. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.
    Xie Q; Dong G; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 May; 13(1):137. PubMed ID: 29740712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized and Actively Tunable Triple-Band Terahertz Metamaterial Absorber Using an Analogy I-Typed Resonator.
    Wang BX; Xu C; Duan G; Jiang J; Xu W; Yang Z; Wu Y
    Nanoscale Res Lett; 2022 Mar; 17(1):35. PubMed ID: 35291018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A five-band absorber based on graphene metamaterial for terahertz ultrasensing.
    Jiang W; Chen T
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption.
    Jiang H; Wang Y; Cui Z; Zhang X; Zhu Y; Zhang K
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive refractive index sensing with a dual-band optically transparent ITO-based perfect metamaterial absorber for biomedical applications.
    Mishu SJ; Rahman MA; Dhar N
    Heliyon; 2024 Mar; 10(5):e26842. PubMed ID: 38562491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications.
    Hakim ML; Alam T; Islam MT; Baharuddin MH; Alzamil A; Islam MS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch.
    Wang BX; Xu W; Wu Y; Yang Z; Lai S; Lu L
    Nanoscale Adv; 2022 Mar; 4(5):1359-1367. PubMed ID: 36133689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing.
    Karthikeyan M; Jayabala P; Ramachandran S; Dhanabalan SS; Sivanesan T; Ponnusamy M
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance.
    Lai R; Chen H; Zhou Z; Yi Z; Tang B; Chen J; Yi Y; Tang C; Zhang J; Sun T
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Quad-Band and Polarization-Insensitive Metamaterial Absorber with a Low Profile Based on Graphene-Assembled Film.
    Jin S; Zu H; Qian W; Luo K; Xiao Y; Song R; Xiong B
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Cui J
    Nanoscale; 2023 Feb; 15(7):3398-3407. PubMed ID: 36722909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Six-Band Polarization-Insensitive Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator for Terahertz Waves.
    Cheng YZ; Huang ML; Chen HR; Guo ZZ; Mao XS; Gong RZ
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber.
    Wang J; Lang T; Hong Z; Xiao M; Yu J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot.
    Wang BX; Tang C; Niu Q; He Y; Chen R
    Nanoscale Adv; 2019 Sep; 1(9):3621-3625. PubMed ID: 36133543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-band terahertz metamaterial absorber based on Dirac semimetal for a refractive index sensing application.
    Jiang J; Xu W; Wu Y; Duan G; Xu C; Zhao Q; Zhu H; Zhang X; Wang BX
    Appl Opt; 2023 Jun; 62(17):4706-4715. PubMed ID: 37707169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-band terahertz superabsorbers based on perforated square-patch metamaterials.
    Wang BX; He Y; Lou P; Zhu H
    Nanoscale Adv; 2021 Jan; 3(2):455-462. PubMed ID: 36131750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry.
    Mazare AG; Abdulkarim YI; Karim AS; Bakır M; Taouzari M; Muhammadsharif FF; Appasani B; Altıntaş O; Karaaslan M; Bizon N
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal interwoven resonator based penta-band metamaterial absorbers for THz sensing and imaging.
    Ozpinar H; Aksimsek S
    Sci Rep; 2022 Nov; 12(1):19758. PubMed ID: 36396852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance terahertz refractive index sensor for cancer cells detection.
    Anwar S; Khan M
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):19. PubMed ID: 36952098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.