These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29740774)
1. Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia. Cho JH; Kim GY; Mansfield BC; Chou JY J Inherit Metab Dis; 2018 May; ():. PubMed ID: 29740774 [TBL] [Abstract][Full Text] [Related]
2. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia. Cho JH; Kim GY; Pan CJ; Anduaga J; Choi EJ; Mansfield BC; Chou JY PLoS Genet; 2017 May; 13(5):e1006819. PubMed ID: 28558013 [TBL] [Abstract][Full Text] [Related]
3. Activation of tumor-promoting pathways implicated in hepatocellular adenoma/carcinoma, a long-term complication of glycogen storage disease type Ia. Cho JH; Lee YM; Bae SH; Chou JY Biochem Biophys Res Commun; 2020 Jan; 522(1):1-7. PubMed ID: 31735334 [TBL] [Abstract][Full Text] [Related]
4. Hepatic glucose-6-phosphatase-α deficiency leads to metabolic reprogramming in glycogen storage disease type Ia. Cho JH; Kim GY; Mansfield BC; Chou JY Biochem Biophys Res Commun; 2018 Apr; 498(4):925-931. PubMed ID: 29545180 [TBL] [Abstract][Full Text] [Related]
5. Gene therapy prevents hepatic tumor initiation in murine glycogen storage disease type Ia at the tumor-developing stage. Cho JH; Lee YM; Starost MF; Mansfield BC; Chou JY J Inherit Metab Dis; 2019 May; 42(3):459-469. PubMed ID: 30637773 [TBL] [Abstract][Full Text] [Related]
6. The signaling pathways implicated in impairment of hepatic autophagy in glycogen storage disease type Ia. Gautam S; Zhang L; Arnaoutova I; Lee C; Mansfield BC; Chou JY Hum Mol Genet; 2020 Mar; 29(5):834-844. PubMed ID: 31961433 [TBL] [Abstract][Full Text] [Related]
7. Glycogen storage disease type Ia mice with less than 2% of normal hepatic glucose-6-phosphatase-α activity restored are at risk of developing hepatic tumors. Kim GY; Lee YM; Kwon JH; Cho JH; Pan CJ; Starost MF; Mansfield BC; Chou JY Mol Genet Metab; 2017 Mar; 120(3):229-234. PubMed ID: 28096054 [TBL] [Abstract][Full Text] [Related]
8. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. Philp A; Chen A; Lan D; Meyer GA; Murphy AN; Knapp AE; Olfert IM; McCurdy CE; Marcotte GR; Hogan MC; Baar K; Schenk S J Biol Chem; 2011 Sep; 286(35):30561-30570. PubMed ID: 21757760 [TBL] [Abstract][Full Text] [Related]
9. Minimal hepatic glucose-6-phosphatase-α activity required to sustain survival and prevent hepatocellular adenoma formation in murine glycogen storage disease type Ia. Lee YM; Kim GY; Pan CJ; Mansfield BC; Chou JY Mol Genet Metab Rep; 2015 Jun; 3():28-32. PubMed ID: 26937391 [TBL] [Abstract][Full Text] [Related]
11. Prevention of hepatocellular adenoma and correction of metabolic abnormalities in murine glycogen storage disease type Ia by gene therapy. Lee YM; Jun HS; Pan CJ; Lin SR; Wilson LH; Mansfield BC; Chou JY Hepatology; 2012 Nov; 56(5):1719-29. PubMed ID: 22422504 [TBL] [Abstract][Full Text] [Related]
12. Emerging roles of autophagy in hepatic tumorigenesis and therapeutic strategies in glycogen storage disease type Ia: A review. Cho JH; Weinstein DA; Lee YM J Inherit Metab Dis; 2021 Jan; 44(1):118-128. PubMed ID: 32474930 [TBL] [Abstract][Full Text] [Related]
13. Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence. Xiong S; Salazar G; Patrushev N; Ma M; Forouzandeh F; Hilenski L; Alexander RW Arterioscler Thromb Vasc Biol; 2013 May; 33(5):988-98. PubMed ID: 23430617 [TBL] [Abstract][Full Text] [Related]
14. Mice expressing reduced levels of hepatic glucose-6-phosphatase-α activity do not develop age-related insulin resistance or obesity. Kim GY; Lee YM; Cho JH; Pan CJ; Jun HS; Springer DA; Mansfield BC; Chou JY Hum Mol Genet; 2015 Sep; 24(18):5115-25. PubMed ID: 26089201 [TBL] [Abstract][Full Text] [Related]
15. Gene therapy using a novel G6PC-S298C variant enhances the long-term efficacy for treating glycogen storage disease type Ia. Zhang L; Lee C; Arnaoutova I; Anduaga J; Starost MF; Mansfield BC; Chou JY Biochem Biophys Res Commun; 2020 Jun; 527(3):824-830. PubMed ID: 32430177 [TBL] [Abstract][Full Text] [Related]
16. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Yang X; Liu Q; Li Y; Tang Q; Wu T; Chen L; Pu S; Zhao Y; Zhang G; Huang C; Zhang J; Zhang Z; Huang Y; Zou M; Shi X; Jiang W; Wang R; He J Adipocyte; 2020 Dec; 9(1):484-494. PubMed ID: 32835596 [TBL] [Abstract][Full Text] [Related]
17. Pathogenesis of Hepatic Tumors following Gene Therapy in Murine and Canine Models of Glycogen Storage Disease. Kang HR; Gjorgjieva M; Smith SN; Brooks ED; Chen Z; Burgess SM; Chandler RJ; Waskowicz LR; Grady KM; Li S; Mithieux G; Venditti CP; Rajas F; Koeberl DD Mol Ther Methods Clin Dev; 2019 Dec; 15():383-391. PubMed ID: 31890731 [TBL] [Abstract][Full Text] [Related]
18. Advanced Glycation End Products Induced Mitochondrial Dysfunction of Chondrocytes through Repression of AMPKα-SIRT1-PGC-1α Pathway. Yang Q; Shi Y; Jin T; Duan B; Wu S Pharmacology; 2022; 107(5-6):298-307. PubMed ID: 35240662 [TBL] [Abstract][Full Text] [Related]
19. Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling. Koka S; Aluri HS; Xi L; Lesnefsky EJ; Kukreja RC Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1558-68. PubMed ID: 24727492 [TBL] [Abstract][Full Text] [Related]
20. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. Gurd BJ; Yoshida Y; Lally J; Holloway GP; Bonen A J Physiol; 2009 Apr; 587(Pt 8):1817-28. PubMed ID: 19237425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]