BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 29740942)

  • 1. Genetic defects disrupting glial ion and water homeostasis in the brain.
    Min R; van der Knaap MS
    Brain Pathol; 2018 May; 28(3):372-387. PubMed ID: 29740942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a "panglial syncytium" that is not coupled to neurons.
    Rash JE; Duffy HS; Dudek FE; Bilhartz BL; Whalen LR; Yasumura T
    J Comp Neurol; 1997 Nov; 388(2):265-92. PubMed ID: 9368841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels.
    Benfenati V; Ferroni S
    Neuroscience; 2010 Jul; 168(4):926-40. PubMed ID: 20026249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system.
    Rash JE
    Neuroscience; 2010 Jul; 168(4):982-1008. PubMed ID: 19850107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of glial ion transporters in brain diseases.
    Song S; Luo L; Sun B; Sun D
    Glia; 2020 Mar; 68(3):472-494. PubMed ID: 31418931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain.
    Nielsen S; Nagelhus EA; Amiry-Moghaddam M; Bourque C; Agre P; Ottersen OP
    J Neurosci; 1997 Jan; 17(1):171-80. PubMed ID: 8987746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells.
    Silver IA; Deas J; Erecińska M
    Neuroscience; 1997 May; 78(2):589-601. PubMed ID: 9145812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Homeostatic Functions in Reactive Astrocytes and Their Potential as a Therapeutic Target After Brain Ischemic Injury.
    Pivonkova H; Anderova M
    Curr Pharm Des; 2017; 23(33):5056-5074. PubMed ID: 28699523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights.
    Ciappelloni S; Murphy-Royal C; Dupuis JP; Oliet SHR; Groc L
    Cell Calcium; 2017 Nov; 67():46-52. PubMed ID: 29029790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of aquaporin 4 in the brain.
    Iacovetta C; Rudloff E; Kirby R
    Vet Clin Pathol; 2012 Mar; 41(1):32-44. PubMed ID: 22250904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial diffusion barriers during aging and pathological states.
    Syková E
    Prog Brain Res; 2001; 132():339-63. PubMed ID: 11545002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A roadmap for potassium buffering/dispersion via the glial network of the CNS.
    Beckner ME
    Neurochem Int; 2020 Jun; 136():104727. PubMed ID: 32194142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 14-3-3 protein detectable in the cerebrospinal fluid of patients with prion-unrelated neurological diseases is expressed constitutively in neurons and glial cells in culture.
    Satoh J; Kurohara K; Yukitake M; Kuroda Y
    Eur Neurol; 1999; 41(4):216-25. PubMed ID: 10343153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal versus glial cell swelling in the ischaemic retina.
    Bringmann A; Uckermann O; Pannicke T; Iandiev I; Reichenbach A; Wiedemann P
    Acta Ophthalmol Scand; 2005 Oct; 83(5):528-38. PubMed ID: 16187988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glial metabolism studied by 13C-NMR.
    Zwingmann C; Leibfritz D
    NMR Biomed; 2003; 16(6-7):370-99. PubMed ID: 14679501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling, intracellular acidosis, and damage of glial cells.
    Staub F; Winkler A; Haberstok J; Plesnila N; Peters J; Chang RC; Kempski O; Baethmann A
    Acta Neurochir Suppl; 1996; 66():56-62. PubMed ID: 8780798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron-Glia Interactions in Neurodevelopmental Disorders.
    Kim YS; Choi J; Yoon BE
    Cells; 2020 Sep; 9(10):. PubMed ID: 32992620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of gap junctions in the development of the neocortex.
    Sutor B; Hagerty T
    Biochim Biophys Acta; 2005 Dec; 1719(1-2):59-68. PubMed ID: 16225838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K
    DiNuzzo M; Giove F; Maraviglia B; Mangia S
    Neurochem Res; 2017 Jan; 42(1):202-216. PubMed ID: 27628293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of drug transporters in glial cells: potential role on drug delivery to the CNS.
    Ashraf T; Kao A; Bendayan R
    Adv Pharmacol; 2014; 71():45-111. PubMed ID: 25307214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.