These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29741048)

  • 41. Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem.
    Guo J; Zhang M; Wang X; Zhang W
    J Environ Sci (China); 2015 Mar; 29():27-33. PubMed ID: 25766010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization.
    Lagomarsino A; Moscatelli MC; De Angelis P; Grego S
    Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.
    Pastore MA; Megonigal JP; Langley JA
    Glob Chang Biol; 2016 Jan; 22(1):391-403. PubMed ID: 26577708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.
    Bengtson P; Bengtsson G
    Ecol Lett; 2007 Sep; 10(9):783-90. PubMed ID: 17663711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant and soil natural abundance delta (15)N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems.
    Templer PH; Arthur MA; Lovett GM; Weathers KC
    Oecologia; 2007 Aug; 153(2):399-406. PubMed ID: 17479293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Divergent Responses of Forest Soil Microbial Communities under Elevated CO
    Yu H; He Z; Wang A; Xie J; Wu L; Van Nostrand JD; Jin D; Shao Z; Schadt CW; Zhou J; Deng Y
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A global perspective on belowground carbon dynamics under nitrogen enrichment.
    Liu L; Greaver TL
    Ecol Lett; 2010 Jul; 13(7):819-28. PubMed ID: 20482580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of elevated CO2 concentration and nitrogen supply on biomass and active carbon of freshwater marsh after two growing seasons in Sanjiang Plain, Northeast China.
    Zhao G; Liu J; Wang Y; Dou J; Dong X
    J Environ Sci (China); 2009; 21(10):1393-9. PubMed ID: 19999994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined influence of external nitrogen and soil contact on plant residue decomposition and indications from stable isotope signatures.
    Jiang C; Yu W
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6791-6800. PubMed ID: 30628005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant-mediated effects of elevated CO
    Hu Z; Chen X; Yao J; Zhu C; Zhu J; Liu M
    New Phytol; 2020 Mar; 225(6):2368-2379. PubMed ID: 31667850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling the flow of 15N after a 15N pulse to study long-term N dynamics in a semiarid grassland.
    Dijkstra FA
    Ecology; 2009 Aug; 90(8):2171-82. PubMed ID: 19739379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial functional genes commonly respond to elevated carbon dioxide.
    He Z; Deng Y; Xu M; Li J; Liang J; Xiong J; Yu H; Wu B; Wu L; Xue K; Shi S; Carrillo Y; Van Nostrand JD; Hobbie SE; Reich PB; Schadt CW; Kent AD; Pendall E; Wallenstein M; Luo Y; Yan Q; Zhou J
    Environ Int; 2020 Nov; 144():106068. PubMed ID: 32871382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Responses of soil microbial carbolic metabolism characteristics to home-field advantage of leaf litter decomposition in Liaoheyuan Nature Reserve of northern Hebei Province, China].
    Li TY; Kang FF; Han HR; Gao J; Song XS; Yu S
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2159-66. PubMed ID: 26710646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem.
    Insam H; Bååth E; Berreck M; Frostegård A; Gerzabek MH; Kraft A; Schinner F; Schweiger P; Tschuggnall G
    J Microbiol Methods; 1999 May; 36(1-2):45-54. PubMed ID: 10353799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland.
    Hungate BA; Day FP; Dijkstra P; Duval BD; Hinkle CR; Langley JA; Megonigal JP; Stiling P; Johnson DW; Drake BG
    New Phytol; 2013 Nov; 200(3):767-777. PubMed ID: 23869799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Litterfall 15N abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment.
    Garten CT; Iversen CM; Norby RJ
    Ecology; 2011 Jan; 92(1):133-9. PubMed ID: 21560683
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO₂.
    Nie M; Bell C; Wallenstein MD; Pendall E
    Sci Rep; 2015 Mar; 5():9212. PubMed ID: 25784647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced microbial respiration due to carbon sequestration in pruning litter incorporated soil reduced the net carbon dioxide flux from atmosphere to tea ecosystem.
    Pramanik P; Phukan M
    J Sci Food Agric; 2020 Jan; 100(1):295-300. PubMed ID: 31525259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.