These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29741175)

  • 1. Rapid and sensitive detection of viral nucleic acids using silicon microchips.
    Powell L; Wiederkehr RS; Damascus P; Fauvart M; Buja F; Stakenborg T; Ray SC; Fiorini P; Osburn WO
    Analyst; 2018 May; 143(11):2596-2603. PubMed ID: 29741175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated sample-to-detection chip for nucleic acid test assays.
    Prakash R; Pabbaraju K; Wong S; Tellier R; Kaler KV
    Biomed Microdevices; 2016 Jun; 18(3):44. PubMed ID: 27165104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress on analysis of human papillomavirus by microchip capillary electrophoresis].
    Lin X; Wang C; Lin JM
    Se Pu; 2020 Oct; 38(10):1179-1188. PubMed ID: 34213114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerase chain reaction on microchips.
    Carles MC; Sucher NJ
    Methods Mol Biol; 2006; 321():131-40. PubMed ID: 16508069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens.
    Safavieh M; Kaul V; Khetani S; Singh A; Dhingra K; Kanakasabapathy MK; Draz MS; Memic A; Kuritzkes DR; Shafiee H
    Nanoscale; 2017 Feb; 9(5):1852-1861. PubMed ID: 27845796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens.
    Huang E; Wang Y; Yang N; Shu B; Zhang G; Liu D
    Anal Bioanal Chem; 2021 Mar; 413(7):1787-1798. PubMed ID: 33492406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological qualification of blood units: considerations about the effects of sample's handling and storage on stability of nucleic acids.
    Gessoni G; Barin P; Valverde S; Giacomini A; Di Natale C; Orlandini E; Arreghini N; De Fusco G; Frigato A; Fezzi M; Antico F; Marchiori G
    Transfus Apher Sci; 2004 Jun; 30(3):197-203. PubMed ID: 15172624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel nanoliter detection of cancer markers using polymer microchips.
    Gulliksen A; Solli LA; Drese KS; Sörensen O; Karlsen F; Rogne H; Hovig E; Sirevåg R
    Lab Chip; 2005 Apr; 5(4):416-20. PubMed ID: 15791339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip.
    Liu J; Zhao J; Petrochenko P; Zheng J; Hewlett I
    Biosens Bioelectron; 2016 Dec; 86():150-155. PubMed ID: 27362253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of an automated high-volume extraction method for viral nucleic acids in comparison to a manual procedure with preceding enrichment.
    Hourfar MK; Schmidt M; Seifried E; Roth WK
    Vox Sang; 2005 Aug; 89(2):71-6. PubMed ID: 16101686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings.
    Dineva MA; MahiLum-Tapay L; Lee H
    Analyst; 2007 Dec; 132(12):1193-9. PubMed ID: 18318279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of viral nucleic acid testing on contamination frequency of manufacturing plasma pools.
    Nübling CM; Unkelbach U; Chudy M; Seitz R
    Transfusion; 2008 May; 48(5):822-6. PubMed ID: 18208414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip.
    Zhang J; Yang Z; Liu L; Zhang T; Hu L; Hu C; Chen H; Ding R; Liu B; Chen C
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples.
    Cai Q; Fauvart M; Wiederkehr RS; Jones B; Cools P; Goos P; Vaneechoutte M; Stakenborg T
    Talanta; 2019 Jan; 192():220-225. PubMed ID: 30348381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid pathogen detection using a microchip PCR array instrument.
    Belgrader P; Benett W; Hadley D; Long G; Mariella R; Milanovich F; Nasarabadi S; Nelson W; Richards J; Stratton P
    Clin Chem; 1998 Oct; 44(10):2191-4. PubMed ID: 9761255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, quantitative, reverse transcription PCR in a polymer microfluidic chip.
    Saunders DC; Holst GL; Phaneuf CR; Pak N; Marchese M; Sondej N; McKinnon M; Forest CR
    Biosens Bioelectron; 2013 Jun; 44():222-8. PubMed ID: 23434757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digitalized isothermal nucleic acid testing platform based on a pump-free open droplet array microfluidic chip.
    Mao P; Cao L; Li Z; You M; Gao B; Xie X; Xue Z; Peng P; Yao C; Xu F
    Analyst; 2021 Nov; 146(22):6960-6969. PubMed ID: 34657942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid amplification using microfluidic systems.
    Chang CM; Chang WH; Wang CH; Wang JH; Mai JD; Lee GB
    Lab Chip; 2013 Apr; 13(7):1225-42. PubMed ID: 23407669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids.
    Yang B; Kong J; Fang X
    Talanta; 2019 Nov; 204():685-692. PubMed ID: 31357353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.