BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29741258)

  • 1. Image processing and machine learning in the morphological analysis of blood cells.
    Rodellar J; Alférez S; Acevedo A; Molina A; Merino A
    Int J Lab Hematol; 2018 May; 40 Suppl 1():46-53. PubMed ID: 29741258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning applications in cell image analysis.
    Kan A
    Immunol Cell Biol; 2017 Jul; 95(6):525-530. PubMed ID: 28294138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature Analysis and Automatic Identification of Leukemic Lineage Blast Cells and Reactive Lymphoid Cells from Peripheral Blood Cell Images.
    Bigorra L; Merino A; Alférez S; Rodellar J
    J Clin Lab Anal; 2017 Mar; 31(2):. PubMed ID: 27427422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis.
    Boldú L; Merino A; Alférez S; Molina A; Acevedo A; Rodellar J
    J Clin Pathol; 2019 Nov; 72(11):755-761. PubMed ID: 31256009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine.
    Ravikumar S
    Artif Cells Nanomed Biotechnol; 2016 May; 44(3):985-9. PubMed ID: 25707440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
    Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH
    MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing morphology through blood cell image analysis.
    Merino A; Puigví L; Boldú L; Alférez S; Rodellar J
    Int J Lab Hematol; 2018 May; 40 Suppl 1():54-61. PubMed ID: 29741256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.
    Abdulhay E; Mohammed MA; Ibrahim DA; Arunkumar N; Venkatraman V
    J Med Syst; 2018 Feb; 42(4):58. PubMed ID: 29455440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Analysis of the Current Medical Image-Based Processing Techniques for Automatic Disease Evaluation: Systematic Literature Review.
    Rashed BM; Popescu N
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and automatic screening of reactive and abnormal neoplastic B lymphoid cells from peripheral blood.
    Alférez S; Merino A; Bigorra L; Rodellar J
    Int J Lab Hematol; 2016 Apr; 38(2):209-19. PubMed ID: 26995648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood cell image segmentation and classification: a systematic review.
    Shahzad M; Ali F; Shirazi SH; Rasheed A; Ahmad A; Shah B; Kwak D
    PeerJ Comput Sci; 2024; 10():e1813. PubMed ID: 38435563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning improves supervised image segmentation across imaging protocols.
    van Opbroek A; Ikram MA; Vernooij MW; de Bruijne M
    IEEE Trans Med Imaging; 2015 May; 34(5):1018-30. PubMed ID: 25376036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic working area classification in peripheral blood smears without cell central zone extraction.
    Xiong W; Lim JH; Ong SH; Tung NN; Liu J; Racoceanu D; Tan K; Chong A; Foong K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4074-7. PubMed ID: 19163607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
    Ghesu FC; Krubasik E; Georgescu B; Singh V; Yefeng Zheng ; Hornegger J; Comaniciu D
    IEEE Trans Med Imaging; 2016 May; 35(5):1217-1228. PubMed ID: 27046846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New quantitative features for the morphological differentiation of abnormal lymphoid cell images from peripheral blood.
    Puigví L; Merino A; Alférez S; Acevedo A; Rodellar J
    J Clin Pathol; 2017 Dec; 70(12):1038-1048. PubMed ID: 28611188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient leukocyte segmentation and recognition in peripheral blood image.
    Shirazi SH; Umar AI; Naz S; Razzak MI
    Technol Health Care; 2016 May; 24(3):335-47. PubMed ID: 26835726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.