These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29741258)

  • 1. Image processing and machine learning in the morphological analysis of blood cells.
    Rodellar J; Alférez S; Acevedo A; Molina A; Merino A
    Int J Lab Hematol; 2018 May; 40 Suppl 1():46-53. PubMed ID: 29741258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning applications in cell image analysis.
    Kan A
    Immunol Cell Biol; 2017 Jul; 95(6):525-530. PubMed ID: 28294138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature Analysis and Automatic Identification of Leukemic Lineage Blast Cells and Reactive Lymphoid Cells from Peripheral Blood Cell Images.
    Bigorra L; Merino A; Alférez S; Rodellar J
    J Clin Lab Anal; 2017 Mar; 31(2):. PubMed ID: 27427422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis.
    Boldú L; Merino A; Alférez S; Molina A; Acevedo A; Rodellar J
    J Clin Pathol; 2019 Nov; 72(11):755-761. PubMed ID: 31256009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine.
    Ravikumar S
    Artif Cells Nanomed Biotechnol; 2016 May; 44(3):985-9. PubMed ID: 25707440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
    Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH
    MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing morphology through blood cell image analysis.
    Merino A; Puigví L; Boldú L; Alférez S; Rodellar J
    Int J Lab Hematol; 2018 May; 40 Suppl 1():54-61. PubMed ID: 29741256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.
    Abdulhay E; Mohammed MA; Ibrahim DA; Arunkumar N; Venkatraman V
    J Med Syst; 2018 Feb; 42(4):58. PubMed ID: 29455440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Analysis of the Current Medical Image-Based Processing Techniques for Automatic Disease Evaluation: Systematic Literature Review.
    Rashed BM; Popescu N
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and automatic screening of reactive and abnormal neoplastic B lymphoid cells from peripheral blood.
    Alférez S; Merino A; Bigorra L; Rodellar J
    Int J Lab Hematol; 2016 Apr; 38(2):209-19. PubMed ID: 26995648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood cell image segmentation and classification: a systematic review.
    Shahzad M; Ali F; Shirazi SH; Rasheed A; Ahmad A; Shah B; Kwak D
    PeerJ Comput Sci; 2024; 10():e1813. PubMed ID: 38435563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning improves supervised image segmentation across imaging protocols.
    van Opbroek A; Ikram MA; Vernooij MW; de Bruijne M
    IEEE Trans Med Imaging; 2015 May; 34(5):1018-30. PubMed ID: 25376036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic working area classification in peripheral blood smears without cell central zone extraction.
    Xiong W; Lim JH; Ong SH; Tung NN; Liu J; Racoceanu D; Tan K; Chong A; Foong K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4074-7. PubMed ID: 19163607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
    Ghesu FC; Krubasik E; Georgescu B; Singh V; Yefeng Zheng ; Hornegger J; Comaniciu D
    IEEE Trans Med Imaging; 2016 May; 35(5):1217-1228. PubMed ID: 27046846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New quantitative features for the morphological differentiation of abnormal lymphoid cell images from peripheral blood.
    Puigví L; Merino A; Alférez S; Acevedo A; Rodellar J
    J Clin Pathol; 2017 Dec; 70(12):1038-1048. PubMed ID: 28611188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient leukocyte segmentation and recognition in peripheral blood image.
    Shirazi SH; Umar AI; Naz S; Razzak MI
    Technol Health Care; 2016 May; 24(3):335-47. PubMed ID: 26835726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.