BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29741302)

  • 1. [Leaf photosynthetic pigment seasonal dynamic of Quercus aliena var. acuteserrata and its spectral reflectance response under throughfall elimination].
    Liu C; Sun PS; Liu SR; Lu HB; Chen ZC; Liu XJ
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1077-1086. PubMed ID: 29741302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the phenology of photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest.
    Wong CYS; D'Odorico P; Arain MA; Ensminger I
    New Phytol; 2020 Jun; 226(6):1682-1695. PubMed ID: 32039477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species.
    Stylinski C; Gamon J; Oechel W
    Oecologia; 2002 May; 131(3):366-374. PubMed ID: 28547708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.
    Wong CYS; Gamon JA
    New Phytol; 2015 Apr; 206(1):187-195. PubMed ID: 25408288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio.
    Gitelson A
    J Plant Physiol; 2020 Sep; 252():153227. PubMed ID: 32683162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements.
    Hmimina G; Dufrêne E; Soudani K
    Plant Cell Environ; 2014 Feb; 37(2):473-87. PubMed ID: 23906049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophyll fluorescence, photochemical reflective index and normalized difference vegetative index during plant senescence.
    Cordon G; Lagorio MG; Paruelo JM
    J Plant Physiol; 2016 Jul; 199():100-110. PubMed ID: 27302011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors.
    Weng JH; Jhaung LH; Lin RJ; Chen HY
    Tree Physiol; 2010 Apr; 30(4):469-78. PubMed ID: 20233840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages.
    Rahimzadeh-Bajgiran P; Munehiro M; Omasa K
    Photosynth Res; 2012 Sep; 113(1-3):261-71. PubMed ID: 22644476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconvolution of pigment and physiologically related photochemical reflectance index variability at the canopy scale over an entire growing season.
    Hmimina G; Merlier E; Dufrêne E; Soudani K
    Plant Cell Environ; 2015 Aug; 38(8):1578-90. PubMed ID: 25630621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3.
    Gray SB; Dermody O; DeLucia EH
    J Exp Bot; 2010 Oct; 61(15):4413-22. PubMed ID: 20696654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo quantification of kleptoplastic chlorophyll a content in the "solar-powered" sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry.
    Serôdio J; Pereira S; Furtado J; Silva R; Coelho H; Calado R
    Photochem Photobiol Sci; 2010 Jan; 9(1):68-77. PubMed ID: 20062846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field.
    Hallik L; Niinemets U; Kull O
    Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content.
    Zhang J; Huang W; Zhou Q
    PLoS One; 2014; 9(11):e110812. PubMed ID: 25365207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity?
    Limousin JM; Misson L; Lavoir AV; Martin NK; Rambal S
    Plant Cell Environ; 2010 May; 33(5):863-75. PubMed ID: 20051039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does animal-mediated seed dispersal facilitate the formation of Pinus armandii-Quercus aliena var. acuteserrata forests?
    Yu F; Wang D; Yi X; Shi X; Huang Y; Zhang H; Zhang X
    PLoS One; 2014; 9(2):e89886. PubMed ID: 24587099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining the variability of the photochemical reflectance index (PRI) at the canopy-scale: Disentangling the effects of phenological and physiological changes.
    Merlier E; Hmimina G; Dufrêne E; Soudani K
    J Photochem Photobiol B; 2015 Oct; 151():161-71. PubMed ID: 26295453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.
    Wong CYS; Gamon JA
    New Phytol; 2015 Apr; 206(1):196-208. PubMed ID: 25641209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.