These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 29741362)

  • 1. Designed Synergetic Effect of Electrolyte Additives to Improve Interfacial Chemistry of MCMB Electrode in Propylene Carbonate-Based Electrolyte for Enhanced Low and Room Temperature Performance.
    Wotango AS; Su WN; Haregewoin AM; Chen HM; Cheng JH; Lin MH; Wang CH; Hwang BJ
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25252-25262. PubMed ID: 29741362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Solid-Electrolyte Interphase Enables Near-Theoretical Capacity of Graphite Battery Anode at 0.2 C in Propylene Carbonate-Based Electrolyte.
    Han J; Chung GJ; Song SW
    ChemSusChem; 2020 Oct; 13(20):5497-5506. PubMed ID: 32743913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic thermodynamics and microkinetics of the reduction mechanism of electrolyte additives to facilitate the formation of solid electrolyte interphases in lithium-ion batteries.
    Liu X; Zhou J; Xu Z; Wang Y
    RSC Adv; 2020 Apr; 10(28):16302-16312. PubMed ID: 35498873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.
    Lindgren F; Xu C; Niedzicki L; Marcinek M; Gustafsson T; Björefors F; Edström K; Younesi R
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15758-66. PubMed ID: 27220376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties.
    Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Insights into the Intercalation and Interfacial Chemistry of Mesocarbon Microbeads Anode for Potassium Ion Batteries.
    Wang D; Li L; Zhang Z; Liu J; Guo X; Mao C; Peng H; Li Z; Li G
    Small; 2021 Nov; 17(44):e2103557. PubMed ID: 34590427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes.
    Yim T; Han YK
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32851-32858. PubMed ID: 28880070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF
    Wotango AS; Su WN; Leggesse EG; Haregewoin AM; Lin MH; Zegeye TA; Cheng JH; Hwang BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2410-2420. PubMed ID: 28032739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries.
    Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase.
    Xia L; Lee S; Jiang Y; Xia Y; Chen GZ; Liu Z
    ACS Omega; 2017 Dec; 2(12):8741-8750. PubMed ID: 31457404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of cis- versus trans-Configuration of Butylene Carbonate Electrolyte on Microscopic Solid Electrolyte Interphase Formation Processes in Lithium-Ion Batteries.
    Miyazaki K; Takenaka N; Fujie T; Watanabe E; Yamada Y; Yamada A; Nagaoka M
    ACS Appl Mater Interfaces; 2019 May; 11(17):15623-15629. PubMed ID: 30945849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS
    Zhu Z; Tang Y; Lv Z; Wei J; Zhang Y; Wang R; Zhang W; Xia H; Ge M; Chen X
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3656-3660. PubMed ID: 29488310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Hard Carbon Electrode Performance by Manipulating SEI Formation at High Charging Rates.
    Rangom Y; Gaddam RR; Duignan TT; Zhao XS
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34796-34804. PubMed ID: 31502818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the Role of Li
    He J; Wang H; Zhou Q; Qi S; Wu M; Li F; Hu W; Ma J
    Small Methods; 2021 Aug; 5(8):e2100441. PubMed ID: 34927858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-Transfer Kinetics of The Solid-Electrolyte Interphase on Li
    Nasara RN; Ma W; Kondo Y; Miyazaki K; Miyahara Y; Fukutsuka T; Lin CA; Lin SK; Abe T
    ChemSusChem; 2020 Aug; 13(16):4041-4050. PubMed ID: 32666624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes.
    Shen C; Wang S; Jin Y; Han WQ
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25441-7. PubMed ID: 26502161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives.
    Han JG; Hwang E; Kim Y; Park S; Kim K; Roh DH; Gu M; Lee SH; Kwon TH; Kim Y; Choi NS; Kim BS
    ACS Appl Mater Interfaces; 2020 May; 12(21):24479-24487. PubMed ID: 32368903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.