BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 29741364)

  • 1. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers.
    Mittal N; Ansari F; Gowda V K; Brouzet C; Chen P; Larsson PT; Roth SV; Lundell F; Wågberg L; Kotov NA; Söderberg LD
    ACS Nano; 2018 Jul; 12(7):6378-6388. PubMed ID: 29741364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils.
    Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.
    Torres-Rendon JG; Schacher FH; Ifuku S; Walther A
    Biomacromolecules; 2014 Jul; 15(7):2709-17. PubMed ID: 24947934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the Mechanical Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of Protein Nanofibrils.
    Kamada A; Levin A; Toprakcioglu Z; Shen Y; Lutz-Bueno V; Baumann KN; Mohammadi P; Linder MB; Mezzenga R; Knowles TPJ
    Small; 2020 Mar; 16(9):e1904190. PubMed ID: 31595701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials.
    Nair SS; Yan N
    Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High crystallinity of tunicate cellulose nanofibers for high-performance engineering films.
    Moon SM; Heo JE; Jeon J; Eom T; Jang D; Her K; Cho W; Woo K; Wie JJ; Shim BS
    Carbohydr Polym; 2021 Feb; 254():117470. PubMed ID: 33357925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding.
    Yousefi H; Nishino T; Faezipour M; Ebrahimi G; Shakeri A
    Biomacromolecules; 2011 Nov; 12(11):4080-5. PubMed ID: 21939209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue.
    Hooshmand S; Aitomäki Y; Norberg N; Mathew AP; Oksman K
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13022-8. PubMed ID: 26017287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Apr; 97():190-200. PubMed ID: 28082223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers.
    Wang S; Jiang F; Xu X; Kuang Y; Fu K; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28731208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers.
    Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.