BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29741873)

  • 1. Matrix-Independent Surface-Enhanced Raman Scattering Detection of Uranyl Using Electrospun Amidoximated Polyacrylonitrile Mats and Gold Nanostars.
    Lu G; Johns AJ; Neupane B; Phan HT; Cwiertny DM; Forbes TZ; Haes AJ
    Anal Chem; 2018 Jun; 90(11):6766-6772. PubMed ID: 29741873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT; Vinson C; Haes AJ
    Langmuir; 2021 Apr; 37(16):4891-4899. PubMed ID: 33861606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranyl Speciation on the Surface of Amidoximated Polyacrylonitrile Mats.
    Kravchuk DV; Blanes Diaz A; Carolan ME; Mpundu EA; Cwiertny DM; Forbes TZ
    Inorg Chem; 2020 Jun; 59(12):8134-8145. PubMed ID: 32437172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size.
    Lu G; Forbes TZ; Haes AJ
    Analyst; 2016 Aug; 141(17):5137-43. PubMed ID: 27326897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.
    Ruan C; Luo W; Wang W; Gu B
    Anal Chim Acta; 2007 Dec; 605(1):80-6. PubMed ID: 18022414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer.
    Mahmoud AYF; Rusin CJ; McDermott MT
    Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate.
    Jia P; Cao B; Wang J; Qu J; Liu Y; Pan K
    Analyst; 2015 Aug; 140(16):5707-15. PubMed ID: 26153569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible DNA Hydrogel SERS Active Biofilms for Conformal Ultrasensitive Detection of Uranyl Ions from Aquatic Products.
    He X; Zhou X; Liu W; Liu Y; Wang X
    Langmuir; 2020 Mar; 36(11):2930-2936. PubMed ID: 32114763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS-active Ag Nanostars Substrates for Sensitive Detection of Ethyl Carbamate in Wine.
    Li M; Zhao Y; Cui M; Wang C; Song Q
    Anal Sci; 2016; 32(7):725-8. PubMed ID: 27396651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J; Liu MJ; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic MOF Substrates for the Rapid and Sensitive Surface-Enhanced Raman Scattering Detection of Uranyl.
    Wang N; Du J; Li X; Ji X; Wu Y; Sun Z
    Anal Chem; 2023 Aug; 95(34):12956-12963. PubMed ID: 37583286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient surface-enhanced Raman scattering substrate formulation by self-assembled gold nanoparticles physisorbed on poly(N-isopropylacrylamide) thermoresponsive hydrogels.
    Manikas AC; Romeo G; Papa A; Netti PA
    Langmuir; 2014 Apr; 30(13):3869-75. PubMed ID: 24650247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl.
    Phan HT; Geng S; Haes AJ
    Nanoscale; 2020 Dec; 12(46):23700-23708. PubMed ID: 33226397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS-Active-Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples.
    Kim DJ; Park SG; Kim DH; Kim SH
    Small; 2018 Oct; 14(40):e1802520. PubMed ID: 30129114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper.
    Ngo YH; Li D; Simon GP; Garnier G
    J Colloid Interface Sci; 2013 Feb; 392():237-246. PubMed ID: 23131808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.