These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29741924)

  • 1. Efficient Modeling and Simulation of Space-Dependent Biological Systems.
    Rosati E; Madec M; Kammerer JB; Hébrard L; Lallement C; Haiech J
    J Comput Biol; 2018 Aug; 25(8):917-933. PubMed ID: 29741924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic biology methodology and model refinement based on microelectronic modeling tools and languages.
    Gendrault Y; Madec M; Lallement C; Pecheux F; Haiech J
    Biotechnol J; 2011 Jul; 6(7):796-806. PubMed ID: 21681965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and simulation of biological systems using SPICE language.
    Madec M; Lallement C; Haiech J
    PLoS One; 2017; 12(8):e0182385. PubMed ID: 28787027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.
    Madec M; Pecheux F; Gendrault Y; Rosati E; Lallement C; Haiech J
    J Comput Biol; 2016 Oct; 23(10):841-55. PubMed ID: 27322846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics.
    Gendrault Y; Madec M; Lallement C; Haiech J
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1231-40. PubMed ID: 24658247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of microelectronics CAD tools to synthetic biology].
    Madec M; Haiech J; Rosati É; Rezgui A; Gendrault Y; Lallement C
    Med Sci (Paris); 2017 Feb; 33(2):159-168. PubMed ID: 28240207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear waveform generation.
    Goldstein LJ; Rypins EB
    Comput Methods Programs Biomed; 1990; 31(3-4):185-93. PubMed ID: 2364683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular modeling of cellular systems with ProMoT/Diva.
    Ginkel M; Kremling A; Nutsch T; Rehner R; Gilles ED
    Bioinformatics; 2003 Jun; 19(9):1169-76. PubMed ID: 12801880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic cellular automata: an alternative approach to cellular simulation.
    Wishart DS; Yang R; Arndt D; Tang P; Cruz J
    In Silico Biol; 2005; 5(2):139-61. PubMed ID: 15972011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a framework for modeling, integration and simulation of physiological models.
    Erson EZ; Cavuşoğlu MC
    Comput Methods Programs Biomed; 2012 Sep; 107(3):524-37. PubMed ID: 22309809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network thermodynamics and complexity: a transition to relational systems theory.
    Mikulecky DC
    Comput Chem; 2001 Jul; 25(4):369-91. PubMed ID: 11459352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BioSimulator.jl: Stochastic simulation in Julia.
    Landeros A; Stutz T; Keys KL; Alekseyenko A; Sinsheimer JS; Lange K; Sehl ME
    Comput Methods Programs Biomed; 2018 Dec; 167():23-35. PubMed ID: 30501857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and simulation of a joint scale model for power electronic converters based on wavelet decomposition and reconstruction algorithms.
    He J
    PLoS One; 2024; 19(4):e0298590. PubMed ID: 38578739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process Simulation of Complex Biological Pathways in Physical Reactive Space and Reformulated for Massively Parallel Computing Platforms.
    Ganesan N; Li J; Sharma V; Jiang H; Compagnoni A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):365-79. PubMed ID: 27045833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of P systems with active membranes on CUDA.
    Cecilia JM; García JM; Guerrero GD; Martínez-del-Amor MA; Pérez-Hurtado I; Pérez-Jiménez MJ
    Brief Bioinform; 2010 May; 11(3):313-22. PubMed ID: 20038568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling languages for biochemical network simulation: reaction vs equation based approaches.
    Wiechert W; Noack S; Elsheikh A
    Adv Biochem Eng Biotechnol; 2010; 121():109-38. PubMed ID: 20309675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A platform for in silico modeling of physiological systems.
    Kawazu T; Nakanishi M; Suzuki Y; Odai S; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1394-7. PubMed ID: 18002225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MONALISA for stochastic simulations of Petri net models of biochemical systems.
    Balazki P; Lindauer K; Einloft J; Ackermann J; Koch I
    BMC Bioinformatics; 2015 Jul; 16():215. PubMed ID: 26156221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic modeling of cellular populations within iBioSim.
    Stevens JT; Myers CJ
    ACS Synth Biol; 2013 May; 2(5):223-9. PubMed ID: 23654252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.