These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29742030)

  • 1. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.
    Kim A; Kretch KS; Zhou Z; Finley JM
    J Neurophysiol; 2018 Aug; 120(2):839-847. PubMed ID: 29742030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating the fidelity of lower extremity visual feedback to identify obstacle negotiation strategies in immersive virtual reality.
    Kim A; Zhou Z; Kretch KS; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4491-4494. PubMed ID: 29060895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world.
    Kim A; Schweighofer N; Finley JM
    J Neuroeng Rehabil; 2019 Sep; 16(1):113. PubMed ID: 31521167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating sensory information: obstacle crossing strategies between typically developing children and young adults.
    Rapos V; Cinelli M
    Exp Brain Res; 2020 Feb; 238(2):513-523. PubMed ID: 31960105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb.
    Heijnen MJ; Romine NL; Stumpf DM; Rietdyk S
    Exp Brain Res; 2014 Jul; 232(7):2131-42. PubMed ID: 24838551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online visual cues can compensate for deficits in cutaneous feedback from the dorsal ankle joint for the trailing limb but not the leading limb during obstacle crossing.
    Howe EE; Toth AJ; Bent LR
    Exp Brain Res; 2018 Nov; 236(11):2887-2898. PubMed ID: 30073386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking combined with reach-to-grasp while crossing obstacles at different distances.
    Rinaldi NM; Lim J; Hamill J; Van Emmerik R; Moraes R
    Gait Posture; 2018 Sep; 65():1-7. PubMed ID: 30558913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distracting visuospatial attention while approaching an obstacle reduces the toe-obstacle clearance.
    Lo OY; van Donkelaar P; Chou LS
    Exp Brain Res; 2015 Apr; 233(4):1137-44. PubMed ID: 25567089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-associated changes in obstacle negotiation strategies: Does size and timing matter?
    Maidan I; Eyal S; Kurz I; Geffen N; Gazit E; Ravid L; Giladi N; Mirelman A; Hausdorff JM
    Gait Posture; 2018 Jan; 59():242-247. PubMed ID: 29096267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase.
    Patla AE; Greig M
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):110-4. PubMed ID: 16413969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension.
    Graci V
    Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Evaluation of a Treadmill-based Video-see-through and Optical-see-through Mixed Reality Systems for Obstacle Negotiation Training.
    Miyake T; Al-Sada M; Iskandar A; Itano S; Kamezaki M; Nakajima T; Sugano S
    IEEE Trans Vis Comput Graph; 2024 Jul; PP():. PubMed ID: 38968019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An altered spatiotemporal gait adjustment during a virtual obstacle crossing task in patients with diabetic peripheral neuropathy.
    Huang CK; Shivaswamy V; Thaisetthawatkul P; Mack L; Stergiou N; Siu KC
    J Diabetes Complications; 2019 Feb; 33(2):182-188. PubMed ID: 30442545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.