These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2974211)

  • 1. Automated calculation of stenosis diameters from the width of the velocity jet with the use of a multi-gate pulsed Doppler system.
    de Knecht S; Hopman JC; Alsters JL; Daniëls O; Hoeks AP; Reneman RS
    Ultrasound Med Biol; 1988; 14(7):575-81. PubMed ID: 2974211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of Doppler ultrasound spectral width in the post-stenotic velocity field.
    Campbell JD; Hutchison KJ; Karpinski E
    Ultrasound Med Biol; 1989; 15(7):611-9. PubMed ID: 2683288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies by pulsed Doppler ultrasonography of velocity fields downstream of graded stenoses on the abdominal aorta in pigs.
    Kim WY; Pedersen EM; Nygaard H; Sømod L; Hasenkam JM
    J Vasc Surg; 1994 Mar; 19(3):414-25. PubMed ID: 8126854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler velocity ratio measurements evaluated in a phantom model of multiple arterial disease.
    Allard L; Cloutier G; Durand LG
    Ultrasound Med Biol; 1995; 21(4):471-80. PubMed ID: 7571140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound.
    Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA
    J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of low-grade arterial stenosis using an automatic minimum-flow-velocity tracking system (MVTS) as an adjunct to pulsed ultrasonic Doppler vessel imaging.
    Calil SJ; Roberts VC
    Med Biol Eng Comput; 1985 Jul; 23(4):311-23. PubMed ID: 2931561
    [No Abstract]   [Full Text] [Related]  

  • 7. Shear-layer detection in poststenotic flow by spectrum analysis of Doppler signals.
    Tamura T; Fronek A
    J Biomech Eng; 1988 Nov; 110(4):320-5. PubMed ID: 3060678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doppler color-flow images from a stenosed arterial model: interpretation of flow patterns.
    Rittgers SE; Shu MC
    J Vasc Surg; 1990 Nov; 12(5):511-22. PubMed ID: 2231961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arterial stenosis murmurs: an analysis of flow and pressure fields.
    Abdallah SA; Hwang NH
    J Acoust Soc Am; 1988 Jan; 83(1):318-34. PubMed ID: 2963847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging and pulsed Doppler sonography of poststenotic jets: correlation between signal void and flow velocity distribution.
    Spielmann RP; Zhen J; Triebel HJ; Nicolas V; Heller M; Bücheler E
    Magn Reson Imaging; 1992; 10(6):893-901. PubMed ID: 1461087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential limitations of center-line pulsed Doppler recordings: an in vitro flow visualization study.
    Ojha M; Johnston KW; Cobbold RS; Hummel RL
    J Vasc Surg; 1989 Apr; 9(4):515-20. PubMed ID: 2651725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in ultrasonic Doppler backscattered power downstream of concentric and eccentric stenoses under pulsatile flow.
    Cloutier G; Allard L; Durand LG
    Ultrasound Med Biol; 1995; 21(1):59-70. PubMed ID: 7538706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental analysis of unsteady flows through a stenosis.
    Siouffi M; Deplano V; Pélissier R
    J Biomech; 1998 Jan; 31(1):11-9. PubMed ID: 9596533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mapping and optical flow visualization.
    Krabill KA; Sung HW; Tamura T; Chung KJ; Yoganathan AP; Sahn DJ
    J Am Coll Cardiol; 1989 Jun; 13(7):1672-81. PubMed ID: 2723278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of sub-critical arterial stenoses by hyperaemic Doppler.
    Currie IC; Wilson YG; Baird RN; Lamont PM
    Eur J Vasc Endovasc Surg; 1996 Jan; 11(1):29-35. PubMed ID: 8564483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of mean velocity during pulsatile flow using time-averaged maximum frequency of Doppler ultrasound waveforms.
    Li S; Hoskins PR; Anderson T; McDicken WN
    Ultrasound Med Biol; 1993; 19(2):105-13. PubMed ID: 8516956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsatile poststenotic flow studies with laser Doppler anemometry.
    Ahmed SA; Giddens DP
    J Biomech; 1984; 17(9):695-705. PubMed ID: 6238968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo demonstration of flow recirculation and turbulence downstream of graded stenoses in canine arteries.
    Hutchison KJ; Karpinski E
    J Biomech; 1985; 18(4):285-96. PubMed ID: 3160709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a downstream narrowing on the flow profile in a tube.
    Lubbers J; de Vries MP; Veldman AE; Verkerke GJ
    J Biomech; 2006; 39(1):70-7. PubMed ID: 16271589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study.
    Soustiel JF; Levy E; Bibi R; Lukaschuk S; Manor D
    Stroke; 2001 Mar; 32(3):629-35. PubMed ID: 11239178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.