These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2974211)

  • 41. The area of the pressure-flow loop for assessment of arterial stenosis: a new index.
    Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M
    Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Problems related to the assessment of fluid velocity and volume flow in valve regurgitation using ultrasound Doppler technique.
    Wranne B; Ask P; Loyd D
    Eur Heart J; 1987 Aug; 8 Suppl C():29-33. PubMed ID: 2960526
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of blood-flow quality by statistical analysis or an ultrasonic Doppler signal: application to the study of perturbations caused by a vascular stenosis.
    Moutet JP; Herment A; Guglielmi JP; Piechocki M; Peronneau P
    Cardiovasc Res; 1983 Nov; 17(11):678-90. PubMed ID: 6652644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Valve and great vessel stenosis: assessment with MR jet velocity mapping.
    Kilner PJ; Firmin DN; Rees RS; Martinez J; Pennell DJ; Mohiaddin RH; Underwood SR; Longmore DB
    Radiology; 1991 Jan; 178(1):229-35. PubMed ID: 1984310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro Doppler detection of axisymmetric stenoses from transverse velocity measurements.
    D'Luna LJ; Newhouse VL; Giddens DP
    J Biomech; 1982; 15(9):647-60. PubMed ID: 7174697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mathematical modelling of flow through an irregular arterial stenosis.
    Johnston PR; Kilpatrick D
    J Biomech; 1991; 24(11):1069-77. PubMed ID: 1761583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flow/velocity characteristics of arterial bypass stenoses.
    Leopold PW; Chang BB; Kupinski AM; Shandall AA; Cezeaux J; Kaufman JL; Shah DM; Leather RP
    J Surg Res; 1989 Jan; 46(1):23-8. PubMed ID: 2644487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A numerical and experimental investigation of transitional pulsatile flow in a stenosed channel.
    Beratlis N; Balaras E; Parvinian B; Kiger K
    J Biomech Eng; 2005 Dec; 127(7):1147-57. PubMed ID: 16502657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Angle-independent estimation of maximum velocity through stenoses using vector Doppler ultrasound.
    Steel R; Ramnarine KV; Davidson F; Fish PJ; Hoskins PR
    Ultrasound Med Biol; 2003 Apr; 29(4):575-84. PubMed ID: 12749927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A nomogram of duplex ultrasound quantification of peripheral arterial stenoses. Studies of the cardiovascular model and in angiography patients].
    Ranke C; Rieder M; Creutzig A; Alexander K
    Med Klin (Munich); 1995 Feb; 90(2):72-7. PubMed ID: 7708004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peripheral arterial Doppler ultrasonography: diagnostic criteria.
    Sacks D; Robinson ML; Marinelli DL; Perlmutter GS
    J Ultrasound Med; 1992 Mar; 11(3):95-103. PubMed ID: 1608083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stability of flow patterns in the in vivo post-stenotic velocity field.
    Hutchison KJ; Karpinski E
    Ultrasound Med Biol; 1988; 14(4):269-75. PubMed ID: 2970707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A transputer-based physiological signal processing system. Part 2--System testing and investigation of flow through models of very small arterial stenoses.
    Robinson TM; Cowan DM; Lee JW; Roberts VC
    Med Eng Phys; 1996 Jan; 18(1):36-44. PubMed ID: 8771037
    [TBL] [Abstract][Full Text] [Related]  

  • 55. LDA measurements of velocities in a simulated collapsed tube.
    Bertram CD; Godbole SA
    J Biomech Eng; 1997 Aug; 119(3):357-63. PubMed ID: 9285350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accuracy of the simplified Bernoulli relationship in measuring pressure gradients across stenosis.
    Rieu R; Pelissier R; Isaaz K
    Int Angiol; 1989; 8(4):210-5. PubMed ID: 2699483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation.
    Johnson EL; Yock PG; Hargrave VK; Srebro JP; Manubens SM; Seitz W; Ports TA
    Circulation; 1989 Sep; 80(3):625-35. PubMed ID: 2527644
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poststenotic flow velocity changes as a function of stenosis geometry.
    Lynch TG; Araki CT; DeGroote RD; Psyhojos TJ; Pawel HE; Hobson RW
    Arch Surg; 1987 Mar; 122(3):358-63. PubMed ID: 2950843
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro evaluation of multiple arterial stenoses using three-dimensional power Doppler angiography.
    Guo Z; Durand LG; Allard L; Cloutier G; Fenster A
    J Vasc Surg; 1998 Apr; 27(4):681-8. PubMed ID: 9576082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The principles of pressure drop in long segment stenosis.
    Goldberg SJ
    Herz; 1986 Oct; 11(5):291-5. PubMed ID: 3781464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.