BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29742348)

  • 1. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers.
    Kubota R; Nagao K; Tanaka W; Matsumura R; Aoyama T; Urayama K; Hamachi I
    Nat Commun; 2020 Aug; 11(1):4100. PubMed ID: 32796855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
    Du X; Zhou J; Shi J; Xu B
    Chem Rev; 2015 Dec; 115(24):13165-307. PubMed ID: 26646318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of coumarin-based supramolecular hydrogelators for cell imaging.
    Ji W; Liu G; Xu M; Dou X; Feng C
    Chem Commun (Camb); 2014 Dec; 50(98):15545-8. PubMed ID: 25357251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel.
    Nakamura K; Tanaka W; Sada K; Kubota R; Aoyama T; Urayama K; Hamachi I
    J Am Chem Soc; 2021 Nov; 143(46):19532-19541. PubMed ID: 34767720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy.
    Li J; Gao Y; Kuang Y; Shi J; Du X; Zhou J; Wang H; Yang Z; Xu B
    J Am Chem Soc; 2013 Jul; 135(26):9907-14. PubMed ID: 23742714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation.
    Xue Q; Ren H; Xu C; Wang G; Ren C; Hao J; Ding D
    Sci Rep; 2015 Mar; 5():8764. PubMed ID: 25739554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.
    Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV
    Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels.
    Liu GF; Zhang D; Feng CL
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7789-93. PubMed ID: 24917055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Nanofibers of Drug-Peptide Amphiphile and Affibody Suppress HER2+ Tumor Growth.
    Liang C; Zhang L; Zhao W; Xu L; Chen Y; Long J; Wang F; Wang L; Yang Z
    Adv Healthc Mater; 2018 Nov; 7(22):e1800899. PubMed ID: 30302950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling gelation with sequence: Towards programmable peptide hydrogels.
    Medini K; Mansel BW; Williams MAK; Brimble MA; Williams DE; Gerrard JA
    Acta Biomater; 2016 Oct; 43():30-37. PubMed ID: 27424085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.
    Shigemitsu H; Fujisaku T; Onogi S; Yoshii T; Ikeda M; Hamachi I
    Nat Protoc; 2016 Sep; 11(9):1744-56. PubMed ID: 27560177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of supramolecular hybrid nanomaterials comprising peptide-based supramolecular nanofibers and
    Sugiura S; Shintani Y; Mori D; Higashi SL; Shibata A; Kitamura Y; Kawano SI; Hirosawa KM; Suzuki KGN; Ikeda M
    Nanoscale; 2023 Jan; 15(3):1024-1031. PubMed ID: 36444534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity.
    Beter M; Kara HK; Topal AE; Dana A; Tekinay AB; Guler MO
    Mol Pharm; 2017 Nov; 14(11):3660-3668. PubMed ID: 29020766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-self-assembly cross-linking to integrate molecular nanofibers with copolymers in oscillatory hydrogels.
    Zhang Y; Zhou R; Shi J; Zhou N; Epstein IR; Xu B
    J Phys Chem B; 2013 May; 117(21):6566-73. PubMed ID: 23659692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.