These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29742348)

  • 21. The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Real-time Imaging of Stimuli-Responsive Multicomponent Supramolecular Hydrogels.
    Kubota R; Nakamura K; Torigoe S; Hamachi I
    ChemistryOpen; 2020 Jan; 9(1):67-79. PubMed ID: 31988842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.
    Ji W; Liu G; Li Z; Feng C
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5188-95. PubMed ID: 26844595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel-Sol Transition.
    Tsutsumi N; Ito A; Ishigamori A; Ikeda M; Izumi M; Ochi R
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
    Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B
    Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins.
    Ogawa Y; Yoshiyama C; Kitaoka T
    Langmuir; 2012 Mar; 28(9):4404-12. PubMed ID: 22339091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels.
    Zhang Y; Kuang Y; Gao Y; Xu B
    Langmuir; 2011 Jan; 27(2):529-37. PubMed ID: 20608718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular Nanofibers Formed by Enzyme-Instructed Self-Assembly for SKBR-3 Cell Selective Inhibition.
    Wang S; Ma Y; Ma C; Liu K; Huo Z; Shang Y
    Chem Asian J; 2022 Jul; 17(14):e202200301. PubMed ID: 35510693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targetable Mechanical Properties by Switching between Self-Sorting and Co-assembly with
    Foster JS; Prentice AW; Forgan RS; Paterson MJ; Lloyd GO
    ChemNanoMat; 2018 Aug; 4(8):853-859. PubMed ID: 31032176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles.
    Fu IW; Nguyen HD
    Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dramatic specific-ion effect in supramolecular hydrogels.
    Roy S; Javid N; Frederix PW; Lamprou DA; Urquhart AJ; Hunt NT; Halling PJ; Ulijn RV
    Chemistry; 2012 Sep; 18(37):11723-31. PubMed ID: 22888053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme-responsive chiral self-sorting in amyloid-inspired minimalistic peptide amphiphiles.
    Gupta D; Sasmal R; Singh A; Joseph JP; Miglani C; Agasti SS; Pal A
    Nanoscale; 2020 Sep; 12(36):18692-18700. PubMed ID: 32970093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
    Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K
    J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis.
    Li X; Du X; Li J; Gao Y; Pan Y; Shi J; Zhou N; Xu B
    Langmuir; 2012 Sep; 28(37):13512-7. PubMed ID: 22906360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel.
    Zhou J; Du X; Gao Y; Shi J; Xu B
    J Am Chem Soc; 2014 Feb; 136(8):2970-3. PubMed ID: 24512553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conducting hydrogels of tetraaniline-g-poly(vinyl alcohol) in situ reinforced by supramolecular nanofibers.
    Huang H; Li W; Wang H; Zeng X; Wang Q; Yang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1595-600. PubMed ID: 24443880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.