These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29742415)

  • 1. The Margination of Particles in Areas of Constricted Blood Flow.
    Carboni EJ; Bognet BH; Cowles DB; Ma AWK
    Biophys J; 2018 May; 114(9):2221-2230. PubMed ID: 29742415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Tracking of Particles and Quantification of Margination in Blood Flow.
    Carboni EJ; Bognet BH; Bouchillon GM; Kadilak AL; Shor LM; Ward MD; Ma AWK
    Biophys J; 2016 Oct; 111(7):1487-1495. PubMed ID: 27705771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Margination of 2D Platelet Microparticles in Blood.
    Lovegrove JT; Raveendran R; Spicer P; Förster S; Garvey CJ; Stenzel MH
    ACS Macro Lett; 2023 Mar; 12(3):344-349. PubMed ID: 36821525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of shear rate, confinement, and particle parameters on margination in blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Phys Rev E; 2016 Feb; 93(2):023109. PubMed ID: 26986415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle margination and its implications on intravenous anticancer drug delivery.
    Carboni E; Tschudi K; Nam J; Lu X; Ma AW
    AAPS PharmSciTech; 2014 Jun; 15(3):762-71. PubMed ID: 24687242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding particle margination in blood flow - A step toward optimized drug delivery systems.
    Müller K; Fedosov DA; Gompper G
    Med Eng Phys; 2016 Jan; 38(1):2-10. PubMed ID: 26343228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction.
    Yazdani A; Karniadakis GE
    Soft Matter; 2016 May; 12(19):4339-51. PubMed ID: 27087267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Margination of micro- and nano-particles in blood flow and its effect on drug delivery.
    Müller K; Fedosov DA; Gompper G
    Sci Rep; 2014 May; 4():4871. PubMed ID: 24786000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of particle dynamics in a poststenotic blood vessel region within the scope of extracorporeal ultrasound stenosis treatment.
    Dhahbi M; Ben Chiekh M; Gilles B; Béra JC; Jemni A
    Med Eng Phys; 2012 Sep; 34(7):982-9. PubMed ID: 22119460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow.
    Thompson AJ; Mastria EM; Eniola-Adefeso O
    Biomaterials; 2013 Jul; 34(23):5863-71. PubMed ID: 23642534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel.
    Ye H; Shen Z; Wei M; Li Y
    Soft Matter; 2021 Jan; 17(1):40-56. PubMed ID: 33285555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions.
    Bit A; Alblawi A; Chattopadhyay H; Quais QA; Benim AC; Rahimi-Gorji M; Do HT
    Comput Methods Programs Biomed; 2020 Mar; 185():105163. PubMed ID: 31710989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow of Red Blood Cells in Stenosed Microvessels.
    Vahidkhah K; Balogh P; Bagchi P
    Sci Rep; 2016 Jun; 6():28194. PubMed ID: 27319318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.
    D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S
    J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.