These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 29742459)

  • 1. Amino acid content of beta strands and alpha helices depends on their flanking secondary structure elements.
    Khrustalev VV; Khrustaleva TA; Poboinev VV
    Biosystems; 2018 Jun; 168():45-54. PubMed ID: 29742459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random Coils of Proteins Situated Between a Beta Strand and an Alpha Helix Demonstrate Decreased Solvent Accessibility.
    Khrustalev VV
    Protein J; 2020 Aug; 39(4):308-317. PubMed ID: 32627111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of secondary structure elements by specific combinations of hydrophilic and hydrophobic amino acid residues is more important for proteins encoded by GC-poor genes.
    Khrustalev VV; Barkovsky EV
    Biochimie; 2012 Dec; 94(12):2706-15. PubMed ID: 22930059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional analyses of PolyProline-II helices in globular proteins.
    Kumar P; Bansal M
    J Struct Biol; 2016 Dec; 196(3):414-425. PubMed ID: 27637571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of local variations within secondary structures of proteins.
    Kumar P; Bansal M
    Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1077-86. PubMed ID: 25945573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins.
    Poboinev VV; Khrustalev VV; Khrustaleva TA; Kasko TE; Popkov VD
    Amino Acids; 2022 Aug; 54(8):1155-1171. PubMed ID: 35294674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random coil structures in bacterial proteins. Relationships of their amino acid compositions to flanking structures and corresponding genic base compositions.
    Khrustalev VV; Khrustaleva TA; Barkovsky EV
    Biochimie; 2013 Sep; 95(9):1745-54. PubMed ID: 23764391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of flanking secondary structures on amino Acid content and typical lengths of 3/10 helices.
    Khrustalev VV; Barkovsky EV; Khrustaleva TA
    Int J Proteomics; 2014; 2014():360230. PubMed ID: 25371821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between internal protein nanoenvironments of α-helices and β-sheets.
    Mazoni I; Salim JA; de Moraes FR; Borro L; Neshich G
    PLoS One; 2020; 15(12):e0244315. PubMed ID: 33378364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of specific nanoenvironments containing α-helices in all-α and (α+β)+(α/β) proteins.
    Mazoni I; Borro LC; Jardine JG; Yano IH; Salim JA; Neshich G
    PLoS One; 2018; 13(7):e0200018. PubMed ID: 29990352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type.
    Fujiwara K; Toda H; Ikeguchi M
    BMC Struct Biol; 2012 Aug; 12():18. PubMed ID: 22857400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel protein structural motifs containing two-turn and longer 3(10)-helices.
    Pal L; Basu G
    Protein Eng; 1999 Oct; 12(10):811-4. PubMed ID: 10556239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary structures at polypeptide-chain termini and their features.
    Bhattacharyya R; Pal D; Chakrabarti P
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1793-802. PubMed ID: 12351823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt(ii) cation binding by proteins.
    Khrustalev VV; Khrustaleva TA; Poboinev VV; Karchevskaya CI; Shablovskaya EA; Terechova TG
    Metallomics; 2019 Oct; 11(10):1743-1752. PubMed ID: 31528873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking of TASSER in the ab initio limit.
    Borreguero JM; Skolnick J
    Proteins; 2007 Jul; 68(1):48-56. PubMed ID: 17444524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.
    Koch O; Cole J; Block P; Klebe G
    J Chem Inf Model; 2009 Oct; 49(10):2388-402. PubMed ID: 19807134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propensities of Amino Acid Pairings in Secondary Structure of Globular Proteins.
    Nacar C
    Protein J; 2020 Feb; 39(1):21-32. PubMed ID: 31933010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of amino acid patterns of classified helices and strands in secondary structure prediction.
    Zhu ZY; Blundell TL
    J Mol Biol; 1996 Jul; 260(2):261-76. PubMed ID: 8764405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PentaFOLD 3.0 Algorithm for the Selection of Stable Elements of Secondary Structure to be Included in Vaccine Peptides.
    Khrustalev VV
    Protein Pept Lett; 2021; 28(5):573-588. PubMed ID: 33172366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.