These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29743196)

  • 1. Comprehensive Discovery of Cell-Cycle-Essential Pathways in
    Breker M; Lieberman K; Cross FR
    Plant Cell; 2018 Jun; 30(6):1178-1198. PubMed ID: 29743196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Robotically Assisted Isolation of Temperature-sensitive Lethal Mutants in Chlamydomonas reinhardtii.
    Breker M; Lieberman K; Tulin F; Cross FR
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sizing up the cell cycle: systems and quantitative approaches in Chlamydomonas.
    Umen JG
    Curr Opin Plant Biol; 2018 Dec; 46():96-103. PubMed ID: 30212737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii.
    Ratcliff WC; Herron MD; Howell K; Pentz JT; Rosenzweig F; Travisano M
    Nat Commun; 2013; 4():2742. PubMed ID: 24193369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validated Bayesian Differentiation of Causative and Passenger Mutations.
    Cross FR; Breker M; Lieberman K
    G3 (Bethesda); 2017 Jul; 7(7):2081-2094. PubMed ID: 28526731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From molecular manipulation of domesticated
    Sasso S; Stibor H; Mittag M; Grossman AR
    Elife; 2018 Nov; 7():. PubMed ID: 30382941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing.
    Schierenbeck L; Ries D; Rogge K; Grewe S; Weisshaar B; Kruse O
    BMC Genomics; 2015 Feb; 16(1):57. PubMed ID: 25730202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism.
    Tunçay H; Findinier J; Duchêne T; Cogez V; Cousin C; Peltier G; Ball SG; Dauvillée D
    PLoS One; 2013; 8(9):e74763. PubMed ID: 24019981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock.
    Matsuo T; Ishiura M
    FEBS Lett; 2011 May; 585(10):1495-502. PubMed ID: 21354416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii.
    Wakao S; Shih PM; Guan K; Schackwitz W; Ye J; Patel D; Shih RM; Dent RM; Chovatia M; Sharma A; Martin J; Wei CL; Niyogi KK
    PLoS Genet; 2021 Sep; 17(9):e1009725. PubMed ID: 34492001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of ARGONAUTE Mutants in Chlamydomonas.
    Yamasaki T
    Methods Mol Biol; 2017; 1640():159-172. PubMed ID: 28608341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas.
    Galván A; González-Ballester D; Fernández E
    Adv Exp Med Biol; 2007; 616():77-89. PubMed ID: 18161492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.
    Li X; Jonikas MC
    Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.
    Mittag M; Wagner V
    Biol Chem; 2003 May; 384(5):689-95. PubMed ID: 12817465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants.
    Dent RM; Sharifi MN; Malnoë A; Haglund C; Calderon RH; Wakao S; Niyogi KK
    Plant J; 2015 Apr; 82(2):337-51. PubMed ID: 25711437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas.
    Tulin F; Cross FR
    Plant Cell; 2015 Oct; 27(10):2727-42. PubMed ID: 26475866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates.
    Gallaher SD; Fitz-Gibbon ST; Strenkert D; Purvine SO; Pellegrini M; Merchant SS
    Plant J; 2018 Feb; 93(3):545-565. PubMed ID: 29172250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the circadian clock in Chlamydomonas.
    Matsuo T; Ishiura M
    Int Rev Cell Mol Biol; 2010; 280():281-314. PubMed ID: 20797685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii.
    Choi YE; Hwang H; Kim HS; Ahn JW; Jeong WJ; Yang JW
    Bioresour Technol; 2013 Oct; 145():108-15. PubMed ID: 23582219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii.
    Yamasaki T; Voshall A; Kim EJ; Moriyama E; Cerutti H; Ohama T
    Plant J; 2013 Dec; 76(6):1045-56. PubMed ID: 24127635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.