These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1054 related articles for article (PubMed ID: 29743203)
61. Localization of PPM1H phosphatase tunes Parkinson's disease-linked LRRK2 kinase-mediated Rab GTPase phosphorylation and ciliogenesis. Yeshaw WM; Adhikari A; Chiang CY; Dhekne HS; Wawro PS; Pfeffer SR Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2315171120. PubMed ID: 37889931 [TBL] [Abstract][Full Text] [Related]
62. The Role of LRRK2 in Intracellular Organelle Dynamics. Boecker CA J Mol Biol; 2023 Jun; 435(12):167998. PubMed ID: 36764357 [TBL] [Abstract][Full Text] [Related]
63. Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Thirstrup K; Dächsel JC; Oppermann FS; Williamson DS; Smith GP; Fog K; Christensen KV Sci Rep; 2017 Aug; 7(1):10300. PubMed ID: 28860483 [TBL] [Abstract][Full Text] [Related]
64. Mechanisms of Sargent D; Moore DJ Int Rev Mov Disord; 2021; 2():221-244. PubMed ID: 35497708 [TBL] [Abstract][Full Text] [Related]
65. The impact of VPS35 D620N mutation on alternative autophagy and its reversal by estrogen in Parkinson's disease. Shiraishi T; Bono K; Hiraki H; Manome Y; Oka H; Iguchi Y; Okano HJ Cell Mol Life Sci; 2024 Feb; 81(1):103. PubMed ID: 38409392 [TBL] [Abstract][Full Text] [Related]
66. LRRK2 phosphorylation status and kinase activity regulate (macro)autophagy in a Rab8a/Rab10-dependent manner. Kania E; Long JS; McEwan DG; Welkenhuyzen K; La Rovere R; Luyten T; Halpin J; Lobbestael E; Baekelandt V; Bultynck G; Ryan KM; Parys JB Cell Death Dis; 2023 Jul; 14(7):436. PubMed ID: 37454104 [TBL] [Abstract][Full Text] [Related]
67. RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase-mediated centrosomal cohesion and ciliogenesis deficits. Lara Ordónez AJ; Fernández B; Fdez E; Romo-Lozano M; Madero-Pérez J; Lobbestael E; Baekelandt V; Aiastui A; López de Munaín A; Melrose HL; Civiero L; Hilfiker S Hum Mol Genet; 2019 Nov; 28(21):3552-3568. PubMed ID: 31428781 [TBL] [Abstract][Full Text] [Related]
68. Genotype-phenotype relations for the Parkinson's disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Trinh J; Zeldenrust FMJ; Huang J; Kasten M; Schaake S; Petkovic S; Madoev H; Grünewald A; Almuammar S; König IR; Lill CM; Lohmann K; Klein C; Marras C Mov Disord; 2018 Dec; 33(12):1857-1870. PubMed ID: 30357936 [TBL] [Abstract][Full Text] [Related]
69. Role of the VPS35 D620N mutation in Parkinson's disease. Mohan M; Mellick GD Parkinsonism Relat Disord; 2017 Mar; 36():10-18. PubMed ID: 27964832 [TBL] [Abstract][Full Text] [Related]
77. Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Xu E; Boddu R; Abdelmotilib HA; Sokratian A; Kelly K; Liu Z; Bryant N; Chandra S; Carlisle SM; Lefkowitz EJ; Harms AS; Benveniste EN; Yacoubian TA; Volpicelli-Daley LA; Standaert DG; West AB Mol Neurodegener; 2022 Jan; 17(1):7. PubMed ID: 35012605 [TBL] [Abstract][Full Text] [Related]
78. The Cell Biology of LRRK2 in Parkinson's Disease. Usmani A; Shavarebi F; Hiniker A Mol Cell Biol; 2021 Apr; 41(5):. PubMed ID: 33526455 [TBL] [Abstract][Full Text] [Related]
79. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Chiu CC; Weng YH; Huang YZ; Chen RS; Liu YC; Yeh TH; Lu CS; Lin YW; Chen YJ; Hsu CC; Chiu CH; Wang YT; Chen WS; Liu SY; Wang HL Cell Death Dis; 2020 Nov; 11(11):1018. PubMed ID: 33257649 [TBL] [Abstract][Full Text] [Related]
80. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson's disease. Taylor M; Alessi DR Curr Opin Cell Biol; 2020 Apr; 63():102-113. PubMed ID: 32036294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]