BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29743240)

  • 1. Control of mitochondrial superoxide production by reverse electron transport at complex I.
    Robb EL; Hall AR; Prime TA; Eaton S; Szibor M; Viscomi C; James AM; Murphy MP
    J Biol Chem; 2018 Jun; 293(25):9869-9879. PubMed ID: 29743240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How mitochondria produce reactive oxygen species.
    Murphy MP
    Biochem J; 2009 Jan; 417(1):1-13. PubMed ID: 19061483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
    Treberg JR; Quinlan CL; Brand MD
    J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite and tissue-specific effects of coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria: role of complex I.
    Gharib A; De Paulis D; Li B; Augeul L; Couture-Lepetit E; Gomez L; Angoulvant D; Ovize M
    J Mol Cell Cardiol; 2012 May; 52(5):1091-5. PubMed ID: 22387164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I
    Wong HS; Monternier PA; Brand MD
    Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak.
    Herlein JA; Fink BD; Henry DM; Yorek MA; Teesch LM; Sivitz WI
    Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1616-24. PubMed ID: 21940403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of: Production of Superoxide Radicals and Hydrogen Peroxide by NADH- Ubiquinone Reductase and Ubiquinol-Cytochrome c Reductase from Beef-Heart Mitochondria.
    Cadenas E; Boveris A; Ian Ragan C; O M Stoppani A
    Arch Biochem Biophys; 2022 Sep; 726():109231. PubMed ID: 35660298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential.
    Ishihara G; Kawamoto K; Komori N; Ishibashi T
    Biochem Biophys Res Commun; 2020 Feb; 522(4):965-970. PubMed ID: 31810604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.
    Mailloux RJ
    Redox Biol; 2015; 4():381-98. PubMed ID: 25744690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane.
    Lambert AJ; Brand MD
    Biochem J; 2004 Sep; 382(Pt 2):511-7. PubMed ID: 15175007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension.
    Dikalov SI; Nazarewicz RR; Bikineyeva A; Hilenski L; Lassègue B; Griendling KK; Harrison DG; Dikalova AE
    Antioxid Redox Signal; 2014 Jan; 20(2):281-94. PubMed ID: 24053613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.