BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29743405)

  • 1. [Recurrent SPI1 fusions in pediatric T-cell acute lymphoblastic leukemia: novel mutations with poor prognosis].
    Seki M; Takita J
    Rinsho Ketsueki; 2018; 59(4):439-447. PubMed ID: 29743405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia.
    Seki M; Kimura S; Isobe T; Yoshida K; Ueno H; Nakajima-Takagi Y; Wang C; Lin L; Kon A; Suzuki H; Shiozawa Y; Kataoka K; Fujii Y; Shiraishi Y; Chiba K; Tanaka H; Shimamura T; Masuda K; Kawamoto H; Ohki K; Kato M; Arakawa Y; Koh K; Hanada R; Moritake H; Akiyama M; Kobayashi R; Deguchi T; Hashii Y; Imamura T; Sato A; Kiyokawa N; Oka A; Hayashi Y; Takagi M; Manabe A; Ohara A; Horibe K; Sanada M; Iwama A; Mano H; Miyano S; Ogawa S; Takita J
    Nat Genet; 2017 Aug; 49(8):1274-1281. PubMed ID: 28671687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Genetic basis of pediatric T-cell acute lymphoblastic leukemia and its clinical impact].
    Takita J
    Rinsho Ketsueki; 2018; 59(7):953-959. PubMed ID: 30078808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia.
    Van Thillo Q; De Bie J; Seneviratne JA; Demeyer S; Omari S; Balachandran A; Zhai V; Tam WL; Sweron B; Geerdens E; Gielen O; Provost S; Segers H; Boeckx N; Marshall GM; Cheung BB; Isobe K; Kato I; Takita J; Amos TG; Deveson IW; McCalmont H; Lock RB; Oxley EP; Garwood MM; Dickins RA; Uyttebroeck A; Carter DR; Cools J; de Bock CE
    Nat Commun; 2021 Jul; 12(1):4164. PubMed ID: 34230493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1.
    Zhu H; Zhang L; Wu Y; Dong B; Guo W; Wang M; Yang L; Fan X; Tang Y; Liu N; Lei X; Wu H
    Elife; 2018 Nov; 7():. PubMed ID: 30412053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Senescence is a Spi1-induced anti-proliferative mechanism in primary hematopoietic cells.
    Delestré L; Cui H; Esposito M; Quiveron C; Mylonas E; Penard-Lacronique V; Bischof O; Guillouf C
    Haematologica; 2017 Nov; 102(11):1850-1860. PubMed ID: 28912174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated analysis of transcriptome and genome variations in pediatric T cell acute lymphoblastic leukemia: data from north Indian tertiary care center.
    Singh M; Sharma P; Bhatia P; Trehan A; Thakur R; Sreedharanunni S
    BMC Cancer; 2024 Mar; 24(1):325. PubMed ID: 38459434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driver mutations in Janus kinases in a mouse model of B-cell leukemia induced by deletion of PU.1 and Spi-B.
    Batista CR; Lim M; Laramée AS; Abu-Sardanah F; Xu LS; Hossain R; Bell GI; Hess DA; DeKoter RP
    Blood Adv; 2018 Nov; 2(21):2798-2810. PubMed ID: 30355579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dasatinib-therapy induced sustained remission in a child with refractory TCF7-SPI1 T-cell acute lymphoblastic leukemia.
    He Y; Zhang J; Zhang Y; Hu Z; Wang P; Gan W; Xie S; Qian M; Pui CH; Jiang H; Zhu X; Zhang H; Zhang W
    Pediatr Blood Cancer; 2022 Aug; 69(8):e29724. PubMed ID: 35441457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival.
    Yuan L; Lu L; Yang Y; Sun H; Chen X; Huang Y; Wang X; Zou L; Bao L
    Ann Hematol; 2015 Nov; 94(11):1817-28. PubMed ID: 26341754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Spi1/PU.1 transcription factor accelerates replication fork progression by increasing PP1 phosphatase in leukemia.
    Rimmelé P; Esposito M; Delestré L; Guervilly JH; Ridinger-Saison M; Despras E; Moreau-Gachelin F; Rosselli F; Guillouf C
    Oncotarget; 2017 Jun; 8(23):37104-37114. PubMed ID: 28415748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU.1) and HOXC13.
    Yu M; Al-Dallal S; Al-Haj L; Panjwani S; McCartney AS; Edwards SM; Manjunath P; Walker C; Awgulewitsch A; Hentges KE
    Genesis; 2016 Oct; 54(10):519-533. PubMed ID: 27506447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetic and epigenetic landscape of pediatric T-cell acute lymphoblastic leukemia].
    Kimura S
    Rinsho Ketsueki; 2019; 60(5):459-467. PubMed ID: 31168014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia.
    Chen B; Jiang L; Zhong ML; Li JF; Li BS; Peng LJ; Dai YT; Cui BW; Yan TQ; Zhang WN; Weng XQ; Xie YY; Lu J; Ren RB; Chen SN; Hu JD; Wu DP; Chen Z; Tang JY; Huang JY; Mi JQ; Chen SJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):373-378. PubMed ID: 29279377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population-based targeted RNA sequencing reveals novel disease-related gene fusions in pediatric and adult T-ALL.
    Norvilas R; Batiuskaite R; Dirse V; Semaskeviciene R; Gineikiene E; Stoskus M; Vaitkeviciene G; Rascon J; Griskevicius L
    Leuk Res; 2022 May; 116():106825. PubMed ID: 35339799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study.
    Trinquand A; Tanguy-Schmidt A; Ben Abdelali R; Lambert J; Beldjord K; Lengliné E; De Gunzburg N; Payet-Bornet D; Lhermitte L; Mossafa H; Lhéritier V; Bond J; Huguet F; Buzyn A; Leguay T; Cahn JY; Thomas X; Chalandon Y; Delannoy A; Bonmati C; Maury S; Nadel B; Macintyre E; Ifrah N; Dombret H; Asnafi V
    J Clin Oncol; 2013 Dec; 31(34):4333-42. PubMed ID: 24166518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.
    La Starza R; Barba G; Demeyer S; Pierini V; Di Giacomo D; Gianfelici V; Schwab C; Matteucci C; Vicente C; Cools J; Messina M; Crescenzi B; Chiaretti S; Foà R; Basso G; Harrison CJ; Mecucci C
    Haematologica; 2016 Aug; 101(8):951-8. PubMed ID: 27151989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia.
    Gregoricchio S; Polit L; Esposito M; Berthelet J; Delestré L; Evanno E; Diop M; Gallais I; Aleth H; Poplineau M; Zwart W; Rosenbauer F; Rodrigues-Lima F; Duprez E; Boeva V; Guillouf C
    Nucleic Acids Res; 2022 Aug; 50(14):7938-7958. PubMed ID: 35871293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pediatric T-cell acute lymphoblastic leukemia.
    Karrman K; Johansson B
    Genes Chromosomes Cancer; 2017 Feb; 56(2):89-116. PubMed ID: 27636224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.