These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29743428)

  • 1. Synthesis of Silver Nanoparticles-Agarose Composite and Its Application to the Optical Detection of Cyanide Ion.
    Hassanvand H; Hashemi P
    Anal Sci; 2018; 34(5):567-570. PubMed ID: 29743428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions.
    Makwana BA; Vyas DJ; Bhatt KD; Jain VK; Agrawal YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():73-80. PubMed ID: 25004898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile and on-line colorimetric detection of Hg
    Amirjani A; Haghshenas DF
    Talanta; 2019 Jan; 192():418-423. PubMed ID: 30348412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury.
    Jarujamrus P; Amatatongchai M; Thima A; Khongrangdee T; Mongkontong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():86-93. PubMed ID: 25699697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles.
    Zargar B; Hatamie A
    Analyst; 2012 Nov; 137(22):5334-8. PubMed ID: 23016152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric detection of Bi (III) in water and drug samples using pyridine-2,6-dicarboxylic acid modified silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():405-11. PubMed ID: 25919329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg²⁺.
    Shen Z; Luo Y; Wang Q; Wang X; Sun R
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16147-55. PubMed ID: 25144307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.
    Nasiriboroumand M; Montazer M; Barani H
    J Photochem Photobiol B; 2018 Feb; 179():98-104. PubMed ID: 29351880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virgin silver nanoparticles as colorimetric nanoprobe for simultaneous detection of iodide and bromide ion in aqueous medium.
    Bothra S; Kumar R; Pati RK; Kuwar A; Choi HJ; Sahoo SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():122-6. PubMed ID: 25950637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new rapid colorimetric detection method of Al³⁺ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles.
    Yang N; Gao Y; Zhang Y; Shen Z; Wu A
    Talanta; 2014 May; 122():272-7. PubMed ID: 24720995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN
    Bhatt S; Vyas G; Paul P
    ACS Omega; 2022 Jan; 7(1):1318-1328. PubMed ID: 35036793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver Nanoparticle-Based Sensor for the Selective Detection of Nickel Ions.
    Rossi A; Zannotti M; Cuccioloni M; Minicucci M; Petetta L; Angeletti M; Giovannetti R
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Characterization of 1
    Mondal P; Yarger JL
    ACS Omega; 2022 Sep; 7(37):33423-33431. PubMed ID: 36157721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions.
    Kumar VV; Anthony SP
    Anal Chim Acta; 2014 Sep; 842():57-62. PubMed ID: 25127652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles.
    Shaban SM; Moon BS; Pyun DG; Kim DH
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111835. PubMed ID: 33992822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl.
    Zheng M; Wang Y; Wang C; Wei W; Ma S; Sun X; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():315-321. PubMed ID: 29562218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Colorimetric Detection of Thiosulfate by Using Silver Nanoparticles for Smartphone-Based Analysis.
    Dong C; Wang Z; Zhang Y; Ma X; Iqbal MZ; Miao L; Zhou Z; Shen Z; Wu A
    ACS Sens; 2017 Aug; 2(8):1152-1159. PubMed ID: 28722404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.