These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29743434)

  • 21. Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning.
    He Q; Ma C; Hu X; Chen H
    Anal Chem; 2013 Feb; 85(3):1327-31. PubMed ID: 23244032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple epoxy resin screen-printed paper-based analytical device for detection of phosphate in soil.
    Thongkam T; Hemavibool K
    Anal Methods; 2022 Mar; 14(10):1069-1076. PubMed ID: 35195618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple and fast fabrication of microfluidic paper-based analytical device by contact stamping for multiple-point standard addition assay: Application to direct analysis of urinary creatinine.
    Mathaweesansurn A; Thongrod S; Khongkaew P; Phechkrajang CM; Wilairat P; Choengchan N
    Talanta; 2020 Apr; 210():120675. PubMed ID: 31987195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution measurements of 3,4-methylenedioxymethamphetamine and its metabolites in organs by matrix-assisted laser desorption/ionization imaging mass spectrometry using an automatic matrix spraying system with an air brush and a turntable.
    Kuwayama K; Tsujikawa K; Miyaguchi H; Kanamori T; Iwata YT; Inoue H
    Anal Bioanal Chem; 2012 Oct; 404(6-7):1823-30. PubMed ID: 22865009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating compact and microscale features in paper-based devices by laser cutting.
    Mahmud MA; Blondeel EJ; Kaddoura M; MacDonald BD
    Analyst; 2016 Nov; 141(23):6449-6454. PubMed ID: 27792224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics.
    Roller RM; Rea A; Lieberman M
    Lab Chip; 2023 Mar; 23(7):1918-1925. PubMed ID: 36883463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laminated and infused ParafilmĀ® - paper for paper-based analytical devices.
    Kim YS; Yang Y; Henry CS
    Sens Actuators B Chem; 2018 Feb; 255(3):3654-3661. PubMed ID: 29180835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screen printed paper-based diagnostic devices with polymeric inks.
    Sun JY; Cheng CM; Liao YC
    Anal Sci; 2015; 31(3):145-51. PubMed ID: 25765267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
    Xu C; Zhong M; Cai L; Zheng Q; Zhang X
    Electrophoresis; 2016 Feb; 37(3):476-81. PubMed ID: 26542435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of paper-based analytical devices by a laminating method with thermal ink ribbons, sticky notes, and office appliances.
    Inagawa A; Iimura KI; Uehara N
    Anal Methods; 2023 Jan; 15(4):537-542. PubMed ID: 36645123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm
    Kasetsirikul S; Clack K; Shiddiky MJA; Nguyen NT
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Vitro Nail Penetration of Tavaborole Topical Solution, 5%, Through Nail Polish on Ex Vivo Human Fingernails.
    Vlahovic T; MPharm TM; Chanda S; Zane LT; Coronado D
    J Drugs Dermatol; 2015 Jul; 14(7):675-8. PubMed ID: 26151782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing.
    Zhang Y; Zhou C; Nie J; Le S; Qin Q; Liu F; Li Y; Li J
    Anal Chem; 2014 Feb; 86(4):2005-12. PubMed ID: 24444190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: An example of heavy metals assays.
    Xu W; Chen X; Cai S; Chen J; Xu Z; Jia H; Chen J
    Talanta; 2018 May; 181():333-339. PubMed ID: 29426521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser direct-write for fabrication of three-dimensional paper-based devices.
    He PJ; Katis IN; Eason RW; Sones CL
    Lab Chip; 2016 Aug; 16(17):3296-303. PubMed ID: 27436100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.
    Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH
    ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.