These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29743434)

  • 41. Fabrication of microtiter plate on paper using 96-well plates for wax stamping.
    Borah M; Maheswari D; Dutta HS
    Microfluid Nanofluidics; 2022; 26(12):99. PubMed ID: 36349227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acetone-free nail polish removers: are they safe?
    Brown JJ; Nanayakkara CS
    Clin Toxicol (Phila); 2005; 43(4):297-9. PubMed ID: 16035208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices.
    Mitchell HT; Noxon IC; Chaplan CA; Carlton SJ; Liu CH; Ganaja KA; Martinez NW; Immoos CE; Costanzo PJ; Martinez AW
    Lab Chip; 2015 May; 15(10):2213-20. PubMed ID: 25851055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering fluidic delays in paper-based devices using laser direct-writing.
    He PJ; Katis IN; Eason RW; Sones CL
    Lab Chip; 2015 Oct; 15(20):4054-61. PubMed ID: 26329148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct writing on paper of foldable capacitive touch pads with silver nanowire inks.
    Li RZ; Hu A; Zhang T; Oakes KD
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21721-9. PubMed ID: 25365734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods.
    Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M
    Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of nail polish on pulse oximetry.
    Coté CJ; Goldstein EA; Fuchsman WH; Hoaglin DC
    Anesth Analg; 1988 Jul; 67(7):683-6. PubMed ID: 3382042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.
    Liang WH; Chu CH; Yang RJ
    Talanta; 2015 Dec; 145():6-11. PubMed ID: 26459437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two Potential Clinical Applications of Origami-Based Paper Devices.
    Kuo ZK; Chang TH; Chen YS; Cheng CM; Tsai CY
    Diagnostics (Basel); 2019 Nov; 9(4):. PubMed ID: 31779180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Initial lexicon of sensory properties for nail polish.
    Sun C; Koppel K; Chambers E
    Int J Cosmet Sci; 2014 Jun; 36(3):262-72. PubMed ID: 24575856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples.
    Dossi N; Toniolo R; Terzi F; Piccin E; Bontempelli G
    Electrophoresis; 2015 Aug; 36(16):1830-6. PubMed ID: 25892681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confocal Raman spectrocopy for the analysis of nail polish evidence.
    López-López M; Vaz J; García-Ruiz C
    Talanta; 2015 Jun; 138():155-162. PubMed ID: 25863385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The pursuit of further miniaturization of screen printed micro paper-based analytical devices utilizing controlled penetration towards optimized channel patterning.
    Tseng HY; Lizama JH; Shen YW; Chen CJ
    Sci Rep; 2021 Nov; 11(1):21496. PubMed ID: 34728732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a paper-based microfluidic analytical device by a more facile hydrophobic substrate generation strategy.
    Xue YY; Zhang WT; Zhang MY; Liu LZ; Zhu WX; Yan LZ; Wang J; Wang YR; Wang JL; Zhang DH
    Anal Biochem; 2017 May; 525():100-106. PubMed ID: 28263739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-throughput rapid-prototyping of low-cost paper-based microfluidics.
    Ghaderinezhad F; Amin R; Temirel M; Yenilmez B; Wentworth A; Tasoglu S
    Sci Rep; 2017 Jun; 7(1):3553. PubMed ID: 28620167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.