These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29743488)

  • 1. Three-dimensional hot electron photovoltaic device with vertically aligned TiO
    Goddeti KC; Lee C; Lee YK; Park JY
    Sci Rep; 2018 May; 8(1):7330. PubMed ID: 29743488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO
    Jeon B; Lee H; Goddeti KC; Park JY
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots.
    Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.
    Lee C; Nedrygailov II; Lee YK; Ahn C; Lee H; Jeon S; Park JY
    Nanotechnology; 2015 Nov; 26(44):445201. PubMed ID: 26451470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.
    Ge MZ; Cao CY; Li SH; Tang YX; Wang LN; Qi N; Huang JY; Zhang KQ; Al-Deyab SS; Lai YK
    Nanoscale; 2016 Mar; 8(9):5226-34. PubMed ID: 26878901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the plasmonic photovoltaic.
    Mubeen S; Lee J; Lee WR; Singh N; Stucky GD; Moskovits M
    ACS Nano; 2014 Jun; 8(6):6066-73. PubMed ID: 24861280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic hot carrier-driven photoelectrochemical water splitting on antenna-reactor Pt/Ag/TiO
    Kim H; Park H; Kang M; Park JY
    J Chem Phys; 2022 Aug; 157(8):084701. PubMed ID: 36050032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation.
    Goddeti KC; Lee H; Jeon B; Park JY
    Chem Commun (Camb); 2018 Aug; 54(65):8968-8971. PubMed ID: 29987273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
    Lee YK; Lee H; Lee C; Hwang E; Park JY
    J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.
    Yu Y; Li J; Geng D; Wang J; Zhang L; Andrew TL; Arnold MS; Wang X
    ACS Nano; 2015 Jan; 9(1):564-72. PubMed ID: 25549153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-Current Enhancement in Carbon Quantum Dots Functionalized Titania Nanotube Arrays.
    Rani S; Borse PH; Pareek A; Rajalakshmi N; Dhathathreyan KS
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5999-6004. PubMed ID: 27427662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.
    Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.
    García de Arquer FP; Mihi A; Kufer D; Konstantatos G
    ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.