BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 29743510)

  • 1. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea.
    McLoughlin AG; Wytinck N; Walker PL; Girard IJ; Rashid KY; de Kievit T; Fernando WGD; Whyard S; Belmonte MF
    Sci Rep; 2018 May; 8(1):7320. PubMed ID: 29743510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Control of Sclerotinia Stem Rot in Canola Plants Through Application of Exogenous Hairpin RNA of Multiple
    Azizi A; Del Río Mendoza LE
    Phytopathology; 2024 May; 114(5):1000-1010. PubMed ID: 38506733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of dsRNA for Fungi Disease Management Sclerotinia sclerotiorum and Botrytis cinerea.
    Tang T; Wang Y; Niu D
    Methods Mol Biol; 2024; 2771():127-132. PubMed ID: 38285399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.
    Reich JD; Alexander TW; Chatterton S
    Lett Appl Microbiol; 2016 May; 62(5):379-85. PubMed ID: 26997098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1.
    Pant P; Kaur J
    Planta; 2024 May; 259(6):153. PubMed ID: 38744752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
    Heard S; Brown NA; Hammond-Kosack K
    PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection.
    Girard IJ; Tong C; Becker MG; Mao X; Huang J; de Kievit T; Fernando WGD; Liu S; Belmonte MF
    J Exp Bot; 2017 Nov; 68(18):5079-5091. PubMed ID: 29036633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Stranded RNA Targeting White Mold
    Mukherjee S; Beligala G; Feng C; Marzano SY
    Phytopathology; 2024 Jun; 114(6):1253-1262. PubMed ID: 38170667
    [No Abstract]   [Full Text] [Related]  

  • 9. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics.
    Mousavi-Derazmahalleh M; Chang S; Thomas G; Derbyshire M; Bayer PE; Edwards D; Nelson MN; Erskine W; Lopez-Ruiz FJ; Clements J; Hane JK
    BMC Genomics; 2019 May; 20(1):385. PubMed ID: 31101009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.
    Duke KA; Becker MG; Girard IJ; Millar JL; Dilantha Fernando WG; Belmonte MF; de Kievit TR
    BMC Genomics; 2017 Jun; 18(1):467. PubMed ID: 28629321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody.
    Yajima W; Rahman MH; Das D; Suresh MR; Kav NN
    J Agric Food Chem; 2008 Oct; 56(20):9455-63. PubMed ID: 18800799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.
    Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y
    PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
    Amselem J; Cuomo CA; van Kan JA; Viaud M; Benito EP; Couloux A; Coutinho PM; de Vries RP; Dyer PS; Fillinger S; Fournier E; Gout L; Hahn M; Kohn L; Lapalu N; Plummer KM; Pradier JM; Quévillon E; Sharon A; Simon A; ten Have A; Tudzynski B; Tudzynski P; Wincker P; Andrew M; Anthouard V; Beever RE; Beffa R; Benoit I; Bouzid O; Brault B; Chen Z; Choquer M; Collémare J; Cotton P; Danchin EG; Da Silva C; Gautier A; Giraud C; Giraud T; Gonzalez C; Grossetete S; Güldener U; Henrissat B; Howlett BJ; Kodira C; Kretschmer M; Lappartient A; Leroch M; Levis C; Mauceli E; Neuvéglise C; Oeser B; Pearson M; Poulain J; Poussereau N; Quesneville H; Rascle C; Schumacher J; Ségurens B; Sexton A; Silva E; Sirven C; Soanes DM; Talbot NJ; Templeton M; Yandava C; Yarden O; Zeng Q; Rollins JA; Lebrun MH; Dickman M
    PLoS Genet; 2011 Aug; 7(8):e1002230. PubMed ID: 21876677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum.
    Xu Z; Wu S; Liu L; Cheng J; Fu Y; Jiang D; Xie J
    Virus Res; 2015 Feb; 197():127-36. PubMed ID: 25550075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.
    Graham-Taylor C; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2020 Jan; 21(1):7. PubMed ID: 31898475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea.
    Xu Y; Tan J; Lu J; Zhang Y; Li X
    Plant Biotechnol J; 2024 Jan; 22(1):262-277. PubMed ID: 37845842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of simple sequence repeats in genomes of Sclerotinia sclerotiorum and Botrytis cinerea].
    Li W; Chen HG; Li W; Zhang AX; Chen LH; Jiang WL
    Yi Chuan; 2007 Sep; 29(9):1154-60. PubMed ID: 17855269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus.
    Ran H; Liu L; Li B; Cheng J; Fu Y; Jiang D; Xie J
    Virol J; 2016 Jun; 13():92. PubMed ID: 27267756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.