These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29744397)

  • 1. Effects of external stress on biodegradable orthopedic materials: A review.
    Li X; Chu C; Chu PK
    Bioact Mater; 2016 Sep; 1(1):77-84. PubMed ID: 29744397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals.
    Koo Y; Jang Y; Yun Y
    Mater Sci Eng B Solid State Mater Adv Technol; 2017 May; 219():45-54. PubMed ID: 29520128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biostability of materials and implants.
    Bruck SD
    J Long Term Eff Med Implants; 1991; 1(1):89-106. PubMed ID: 10171109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.
    Salahshoor M; Guo Y
    Materials (Basel); 2012 Jan; 5(1):135-155. PubMed ID: 28817036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications.
    Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E
    J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.
    Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications.
    Ulum MF; Arafat A; Noviana D; Yusop AH; Nasution AK; Abdul Kadir MR; Hermawan H
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():336-44. PubMed ID: 24433920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications.
    Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y
    Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions.
    Bontrager J; Mahapatro A; Gomes AS
    J Microsc; 2014 Aug; 255(2):104-15. PubMed ID: 24910359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Characterization of Stress Corrosion Cracking in the AE44 Magnesium Casting Alloy Using Quantitative Fractography Methods.
    Sozańska M; Mościcki A; Czujko T
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review.
    Li LY; Cui LY; Zeng RC; Li SQ; Chen XB; Zheng Y; Kannan MB
    Acta Biomater; 2018 Oct; 79():23-36. PubMed ID: 30149212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.
    Xu W; Yagoshi K; Koga Y; Sasaki M; Niidome T
    Colloids Surf B Biointerfaces; 2018 Mar; 163():100-106. PubMed ID: 29284158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31.
    Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M
    Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.
    Yang J; Guo JL; Mikos AG; He C; Cheng G
    Ann Biomed Eng; 2018 Sep; 46(9):1229-1240. PubMed ID: 29869105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.
    Pogorielov M; Husak E; Solodivnik A; Zhdanov S
    Interv Med Appl Sci; 2017 Mar; 9(1):27-38. PubMed ID: 28932493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable Materials for Bone Repair and Tissue Engineering Applications.
    Sheikh Z; Najeeb S; Khurshid Z; Verma V; Rashid H; Glogauer M
    Materials (Basel); 2015 Aug; 8(9):5744-5794. PubMed ID: 28793533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior.
    Shangguan Y; Wan P; Tan L; Fan X; Qin L; Yang K
    J Colloid Interface Sci; 2016 Nov; 481():1-12. PubMed ID: 27450886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable Materials and Metallic Implants-A Review.
    Prakasam M; Locs J; Salma-Ancane K; Loca D; Largeteau A; Berzina-Cimdina L
    J Funct Biomater; 2017 Sep; 8(4):. PubMed ID: 28954399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress of biodegradable internal fixation materials].
    Su B; Jiang D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1388-92. PubMed ID: 19968186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.