BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29744398)

  • 1. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances.
    He D; Zhuang C; Xu S; Ke X; Yang X; Zhang L; Yang G; Chen X; Mou X; Liu A; Gou Z
    Bioact Mater; 2016 Sep; 1(1):85-92. PubMed ID: 29744398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping.
    Xie J; Yang X; Shao H; Ye J; He Y; Fu J; Gao C; Gou Z
    J Mech Behav Biomed Mater; 2016 Feb; 54():60-71. PubMed ID: 26426432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.
    Zocca A; Elsayed H; Bernardo E; Gomes CM; Lopez-Heredia MA; Knabe C; Colombo P; Günster J
    Biofabrication; 2015 May; 7(2):025008. PubMed ID: 26000907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of 3D printed Ca
    He F; Rao J; Zhou J; Fu W; Wang Y; Zhang Y; Zuo F; Shi H
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113472. PubMed ID: 37487286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation.
    Li Y; Wu R; Yu L; Shen M; Ding X; Lu F; Liu M; Yang X; Gou Z; Xu S
    J Biol Eng; 2021 Jan; 15(1):1. PubMed ID: 33407741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants.
    Wang J; Wang C; Jin K; Yang X; Gao L; Yao C; Dai X; He J; Gao C; Ye J; Li P; Gou Z
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110036. PubMed ID: 31546358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed porous β-Ca
    Fu S; Liu W; Liu S; Zhao S; Zhu Y
    Sci Technol Adv Mater; 2018; 19(1):495-506. PubMed ID: 30034559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement in mechanical strength and biological function of 3D-printed trimagnesium phosphate bioceramic scaffolds by incorporating strontium orthosilicate.
    Huang W; Zeng Y; Shuai W; Fu W; Wen R; Li Y; Fu Q; He F; Yang H
    J Mech Behav Biomed Mater; 2024 May; 157():106606. PubMed ID: 38838542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects.
    Liu A; Sun M; Shao H; Yang X; Ma C; He D; Gao Q; Liu Y; Yan S; Xu S; He Y; Fu J; Gou Z
    J Mater Chem B; 2016 Jun; 4(22):3945-3958. PubMed ID: 32263094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects.
    Shao H; Liu A; Ke X; Sun M; He Y; Yang X; Fu J; Zhang L; Yang G; Liu Y; Xu S; Gou Z
    J Mater Chem B; 2017 Apr; 5(16):2941-2951. PubMed ID: 32263987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.