These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29744439)

  • 1.
    Ma C; Gerhard E; Lin Q; Xia S; Armstrong AD; Yang J
    Bioact Mater; 2018 Mar; 3(1):19-27. PubMed ID: 29744439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro.
    Chung EJ; Sugimoto MJ; Ameer GA
    Acta Biomater; 2011 Nov; 7(11):4057-63. PubMed ID: 21784176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, characterization and osteoblast responses of poly (octanediol citrate)/bioglass nanofiber composites.
    Lian H; Meng Z
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():123-129. PubMed ID: 29519421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblast biocompatibility on poly(octanediol citrate)/sebacate elastomers with controlled wettability.
    Djordjevic I; Szili EJ; Choudhury NR; Dutta N; Steele DA; Kumar S
    J Biomater Sci Polym Ed; 2010; 21(8-9):1039-50. PubMed ID: 20507707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(octamethylene citrate) Modified with Glutathione as a Promising Material for Vascular Tissue Engineering.
    Flis A; Trávníčková M; Koper F; Knap K; Kasprzyk W; Bačáková L; Pamuła E
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol citrate): Physiochemistry and in vitro antibacterial capacity in tissue engineering applications.
    Pourshahrestani S; Zeimaran E; Kadri NA; Gargiulo N; Jindal HM; Hasikin K; Naveen SV; Sekaran SD; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1022-1033. PubMed ID: 30812986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of poly (1, 8-octanediol citrate)/chitosan blend films for tissue engineering applications.
    Zeimaran E; Pourshahrestani S; Pingguan-Murphy B; Kong D; Naveen SV; Kamarul T; Kadri NA
    Carbohydr Polym; 2017 Nov; 175():618-627. PubMed ID: 28917909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering.
    Prabhakaran MP; Nair AS; Kai D; Ramakrishna S
    Biopolymers; 2012 Jul; 97(7):529-38. PubMed ID: 22328272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.
    Du Y; Yu M; Chen X; Ma PX; Lei B
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3079-91. PubMed ID: 26765285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.
    Gyawali D; Nair P; Kim HK; Yang J
    Biomater Sci; 2013 Jan; 1(1):52-64. PubMed ID: 23977427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A citric acid-based hydroxyapatite composite for orthopedic implants.
    Qiu H; Yang J; Kodali P; Koh J; Ameer GA
    Biomaterials; 2006 Dec; 27(34):5845-54. PubMed ID: 16919720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering.
    Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G
    J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term in vivo response to citric acid-based nanocomposites for orthopaedic tissue engineering.
    Chung EJ; Kodali P; Laskin W; Koh JL; Ameer GA
    J Mater Sci Mater Med; 2011 Sep; 22(9):2131-8. PubMed ID: 21786133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk Erosion Degradation Mechanism for Poly(1,8-octanediol-
    Wan L; Lu L; Zhu T; Liu Z; Du R; Luo Q; Xu Q; Zhang Q; Jia X
    Biomacromolecules; 2022 Oct; 23(10):4268-4281. PubMed ID: 36094894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced nanocomposites for bone regeneration.
    Baler K; Ball JP; Cankova Z; Hoshi RA; Ameer GA; Allen JB
    Biomater Sci; 2014 Oct; 2(10):1355-1366. PubMed ID: 32481912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro cytocompatibility of dental resin monomers on osteoblast-like cells.
    Kraus D; Wolfgarten M; Enkling N; Helfgen EH; Frentzen M; Probstmeier R; Winter J; Stark H
    J Dent; 2017 Oct; 65():76-82. PubMed ID: 28711338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.
    Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X
    Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations.
    Xu H; Yan S; Gerhard E; Xie D; Liu X; Zhang B; Shi D; Ameer GA; Yang J
    Adv Mater; 2024 May; ():e2402871. PubMed ID: 38801111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.