These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 29744452)

  • 21. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering.
    Xie M; Su J; Zhou S; Li J; Zhang K
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.
    Ji S; Guvendiren M
    Front Bioeng Biotechnol; 2017; 5():23. PubMed ID: 28424770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An injectable bioink with rapid prototyping in the air and
    Zhou Y; Liao S; Chu Y; Yuan B; Tao X; Hu X; Wang Y
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34488216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability.
    Chu H; Zhang K; Rao Z; Song P; Lin Z; Zhou J; Yang L; Quan D; Bai Y
    Biomater Transl; 2023; 4(2):115-127. PubMed ID: 38283918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting.
    Shi H; Li Y; Xu K; Yin J
    Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photo-crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting.
    Qin Z; Pang Y; Lu C; Yang Y; Gao M; Zheng L; Zhao J
    Biomater Sci; 2022 Nov; 10(22):6549-6557. PubMed ID: 36205771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation.
    Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extrusion-Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks.
    Chen S; Tomov ML; Ning L; Gil CJ; Hwang B; Bauser-Heaton H; Chen H; Serpooshan V
    Adv Biol (Weinh); 2023 Jul; 7(7):e2300124. PubMed ID: 37132122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives.
    Unagolla JM; Jayasuriya AC
    Appl Mater Today; 2020 Mar; 18():. PubMed ID: 32775607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent trends in bioinks for 3D printing.
    Gopinathan J; Noh I
    Biomater Res; 2018; 22():11. PubMed ID: 29636985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.