These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29744520)

  • 1. Effects of Low-Frequency Ultrasound on Microcystis aeruginosa from Cell Inactivation to Disruption.
    Tan X; Shu X; Guo J; Parajuli K; Zhang X; Duan Z
    Bull Environ Contam Toxicol; 2018 Jul; 101(1):117-123. PubMed ID: 29744520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of dissolved organic nitrogen concentration during the ultrasonic pretreatment to Microcystis aeruginosa.
    Liu C; Wang J; Cao Z; Chen W; Bi H
    Ultrason Sonochem; 2016 Mar; 29():236-43. PubMed ID: 26585003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation mechanism of the Microcystis aeruginosa bloom in the water with low dissolved phosphorus.
    Yuan R; Li J; Li Y; Ren L; Wang S; Kong F
    Mar Pollut Bull; 2019 Nov; 148():194-201. PubMed ID: 31430706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae.
    Liu H; Song X; Guan Y; Pan D; Li Y; Xu S; Fang Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23261-23272. PubMed ID: 28831771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.
    Liu Y; Chen S; Chen X; Zhang J; Gao B
    J Hazard Mater; 2015 Oct; 297():83-91. PubMed ID: 25956638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa.
    Liu J; Luo X; Zhang N; Wu Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16321-8. PubMed ID: 27155834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies.
    Wu X; Joyce EM; Mason TJ
    Water Res; 2012 Jun; 46(9):2851-8. PubMed ID: 22440593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark adaptation and ability of pulse-amplitude modulated (PAM) fluorometry to identify nutrient limitation in the bloom-forming cyanobacterium, Microcystis aeruginosa (Kützing).
    Perri KA; Manning SR; Watson SB; Fowler NL; Boyer GL
    J Photochem Photobiol B; 2021 Jun; 219():112186. PubMed ID: 33892284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
    Yang M; Wang X
    Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter.
    Peng Y; Zhang Z; Kong Y; Li Y; Zhou Y; Shi X; Shi X
    Ultrason Sonochem; 2020 May; 63():104909. PubMed ID: 31945559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation.
    Peng Y; Xiao X; Ren B; Zhang Z; Luo J; Yang X; Zhu G
    J Hazard Mater; 2024 Apr; 468():133742. PubMed ID: 38367436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa.
    Zhu X; Kong H; Gao Y; Wu M; Kong F
    J Hazard Mater; 2012 Oct; 237-238():371-5. PubMed ID: 22954602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of phosphorus on Microcystis growth and the changes of other environmental factors.
    Jin XC; Chu ZS; Yi WL; Hu XZ
    J Environ Sci (China); 2005; 17(6):937-41. PubMed ID: 16465882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Response of
    Wang ZH; Zhang HP; Luo ZX
    Huan Jing Ke Xue; 2016 Jul; 37(7):2570-2576. PubMed ID: 29964464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA.
    Lapointe BE; Herren LW; Paule AL
    Harmful Algae; 2017 Dec; 70():1-22. PubMed ID: 29169565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of multiple environmental factors on the growth and extracellular organic matter production of Microcystis aeruginosa: a central composite design response surface model.
    Jiang M; Zheng Z
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23276-23285. PubMed ID: 29869212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neglected methane production and toxicity risk in low-frequency ultrasound for controlling harmful algal blooms.
    Xu H; Tang Z; Liang Z; Chen H; Dai X
    Environ Res; 2023 Sep; 232():116422. PubMed ID: 37327839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.