These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29744562)

  • 1. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials.
    Ahn S; Ardoña HAM; Lind JU; Eweje F; Kim SL; Gonzalez GM; Liu Q; Zimmerman JF; Pyrgiotakis G; Zhang Z; Beltran-Huarac J; Carpinone P; Moudgil BM; Demokritou P; Parker KK
    Anal Bioanal Chem; 2018 Sep; 410(24):6141-6154. PubMed ID: 29744562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.
    Wu Y; Wang L; Guo B; Ma PX
    ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of mussel-inspired surface modification and topographical cues on the behavior of skeletal myoblasts.
    Ku SH; Park CB
    Adv Healthc Mater; 2013 Nov; 2(11):1445-50. PubMed ID: 23584891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel inspired surface functionalization of electrospun nanofibers for bio-applications.
    Nielsen SR; Besenbacher F; Chen M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17029-37. PubMed ID: 24026017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fiber diameter on the assembly of functional 3D cardiac patches.
    Fleischer S; Miller J; Hurowitz H; Shapira A; Dvir T
    Nanotechnology; 2015 Jul; 26(29):291002. PubMed ID: 26133998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Anisotropic Scaffold Integrating 3D Printing and Electrospinning Techniques as a Heart-on-a-Chip Platform for Evaluating Drug-Induced Cardiotoxicity.
    Liu S; Wang Z; Chen X; Han M; Xu J; Li T; Yu L; Qin M; Long M; Li M; Zhang H; Li Y; Wang L; Huang W; Wu Y
    Adv Healthc Mater; 2023 Sep; 12(24):e2300719. PubMed ID: 37155581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
    Kharaziha M; Nikkhah M; Shin SR; Annabi N; Masoumi N; Gaharwar AK; Camci-Unal G; Khademhosseini A
    Biomaterials; 2013 Sep; 34(27):6355-66. PubMed ID: 23747008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning composition and architecture of biomimetic scaffolds for enhanced matrix synthesis by murine cardiomyocytes.
    Gishto A; Farrell K; Kothapalli CR
    J Biomed Mater Res A; 2015 Feb; 103(2):693-708. PubMed ID: 24798055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.
    Reddy CS; Venugopal JR; Ramakrishna S; Zussman E
    J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes.
    Vozzi F; Logrand F; Cabiati M; Cicione C; Boffito M; Carmagnola I; Vitale N; Gori M; Brancaccio M; Del Ry S; Gastaldi D; Cattarinuzzi E; Vena P; Rainer A; Domenici C; Ciardelli G; Sartori S
    Biomed Mater; 2018 Jul; 13(5):055006. PubMed ID: 29869614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrous scaffolds for building hearts and heart parts.
    Capulli AK; MacQueen LA; Sheehy SP; Parker KK
    Adv Drug Deliv Rev; 2016 Jan; 96():83-102. PubMed ID: 26656602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations.
    Lee SJ; Kim ME; Nah H; Seok JM; Jeong MH; Park K; Kwon IK; Lee JS; Park SA
    J Colloid Interface Sci; 2019 Mar; 537():333-344. PubMed ID: 30453227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.
    Xu Y; Wu J; Wang H; Li H; Di N; Song L; Li S; Li D; Xiang Y; Liu W; Mo X; Zhou Q
    Tissue Eng Part C Methods; 2013 Dec; 19(12):925-36. PubMed ID: 23557537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering.
    Ku SH; Park CB
    Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution 3D microscopy study of cardiomyocytes on polymer scaffold nanofibers reveals formation of unusual sheathed structure.
    Balashov V; Efimov A; Agapova O; Pogorelov A; Agapov I; Agladze K
    Acta Biomater; 2018 Mar; 68():214-222. PubMed ID: 29288823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.