BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29744673)

  • 1. A highly glucose-tolerant GH1 β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals.
    Cao H; Zhang Y; Shi P; Ma R; Yang H; Xia W; Cui Y; Luo H; Bai Y; Yao B
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):369-378. PubMed ID: 29744673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.
    Yan FY; Xia W; Zhang XX; Chen S; Nie XZ; Qian LC
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):455-64. PubMed ID: 27256679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides.
    Pei X; Zhao J; Cai P; Sun W; Ren J; Wu Q; Zhang S; Tian C
    Protein Expr Purif; 2016 Mar; 119():75-84. PubMed ID: 26596358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Monascus aged vinegar on isoflavone conversion in soy germ by soaking treatment.
    Chen JC; Wang J; Wang ZJ; Li YJ; Pang J; Lin HT; Yin SW
    Food Chem; 2015 Nov; 186():256-64. PubMed ID: 25976819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel soybean (Glycine max) gene encoding a family 3 β-glucosidase has high isoflavone 7-O-glucoside-hydrolyzing activity in transgenic rice.
    Hsu CC; Wu TM; Hsu YT; Wu CW; Hong CY; Su NW
    J Agric Food Chem; 2015 Jan; 63(3):921-8. PubMed ID: 25569564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation.
    Jeilu O; Alexandersson E; Johansson E; Simachew A; Gessesse A
    Sci Rep; 2024 May; 14(1):10012. PubMed ID: 38693138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose.
    Yang F; Yang X; Li Z; Du C; Wang J; Li S
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8903-15. PubMed ID: 25957152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a novel
    Chen Z; Liu Y; Liu L; Chen Y; Li S; Jia Y
    Prep Biochem Biotechnol; 2019; 49(7):671-678. PubMed ID: 30990111
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides.
    Yang X; Ma R; Shi P; Huang H; Bai Y; Wang Y; Yang P; Fan Y; Yao B
    PLoS One; 2014; 9(9):e106785. PubMed ID: 25188254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of Soybean Isoflavones by Using a β-Glucosidase from Alicyclobacillus herbarius.
    Delgado L; Heckmann CM; Di Pisa F; Gourlay L; Paradisi F
    Chembiochem; 2021 Apr; 22(7):1223-1231. PubMed ID: 33237595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Thermostable GH3
    Li X; Xia W; Bai Y; Ma R; Yang H; Luo H; Shi P
    Biomed Res Int; 2018; 2018():4794690. PubMed ID: 30426008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of a novel glucose-tolerant GH3 β-glucosidase (Bgl1973) from Leifsonia sp. ZF2019.
    He Y; Wang C; Jiao R; Ni Q; Wang Y; Gao Q; Zhang Y; Xu G
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5063-5079. PubMed ID: 35833950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a GH3 halophilic β-glucosidase from Pseudoalteromonas and its NaCl-induced activity toward isoflavones.
    Qu X; Ding B; Li J; Liang M; Du L; Wei Y; Huang R; Pang H
    Int J Biol Macromol; 2020 Dec; 164():1392-1398. PubMed ID: 32763400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Novel Hyperthermophilic GH1 β-Glucosidase from
    He J; Li Y; Sun X; Zuo D; Wang M; Zheng X; Yu P; Shi P
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel cold-adapted GH1 β-glucosidase from
    He J; Duan J; Yu P; Li Y; Wang M; Zhang X; Chen Z; Shi P
    Curr Res Food Sci; 2024; 8():100777. PubMed ID: 38840809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization.
    Ramani G; Meera B; Vanitha C; Rajendhran J; Gunasekaran P
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):553-65. PubMed ID: 25626525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression and biochemical studies of a thermostable glucose tolerant β-glucosidase from Methylococcus capsulatus (bath strain).
    Sathe SS; Soni S; Ranvir VP; Choudhari VG; Odaneth AA; Lali AM; Chandrayan SK
    Int J Biol Macromol; 2017 Sep; 102():805-812. PubMed ID: 28450245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Aglycone Content in Soy Isoflavones Extract by Free and Immobilized Β-Glucosidase and their Effects in Lipid Accumulation.
    Angelotti JAF; Dias FFG; Sato HH; Fernandes P; Nakajima VM; Macedo J
    Appl Biochem Biotechnol; 2020 Nov; 192(3):734-750. PubMed ID: 32535816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring.
    Zhu Q; Huang Y; Yang Z; Wu X; Zhu Q; Zheng H; Zhu D; Lv Z; Yin Y
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds.
    Kim YS; Yeom SJ; Oh DK
    J Agric Food Chem; 2011 Nov; 59(21):11812-8. PubMed ID: 21919440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.