BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29744828)

  • 21. Amyloid Oligomers, Protofibrils and Fibrils.
    Siddiqi MK; Majid N; Malik S; Alam P; Khan RH
    Subcell Biochem; 2019; 93():471-503. PubMed ID: 31939162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptides Composed of Alternating L- and D-Amino Acids Inhibit Amyloidogenesis in Three Distinct Amyloid Systems Independent of Sequence.
    Kellock J; Hopping G; Caughey B; Daggett V
    J Mol Biol; 2016 Jun; 428(11):2317-2328. PubMed ID: 27012425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils.
    Jaworek MW; Schuabb V; Winter R
    Chem Commun (Camb); 2018 May; 54(45):5696-5699. PubMed ID: 29691524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Featuring amyloids with Fourier transform infrared and circular dichroism spectroscopies.
    Calero M; Gasset M
    Methods Mol Biol; 2012; 849():53-68. PubMed ID: 22528083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Identification of fungal strain by Fourier transform infrared spectroscopy and cluster analysis].
    Chai AL; Li JP; Shi YX; Xie XW; Li BJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):2941-4. PubMed ID: 21284158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers.
    Moshe A; Landau M; Eisenberg D
    Methods Mol Biol; 2016; 1345():201-10. PubMed ID: 26453214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of protein hydrophobicity in conformation change and self-assembly into large amyloid fibers.
    Ridgley DM; Claunch EC; Lee PW; Barone JR
    Biomacromolecules; 2014 Apr; 15(4):1240-7. PubMed ID: 24601565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Studies of Amyloid Proteins at the Molecular Level.
    Eisenberg DS; Sawaya MR
    Annu Rev Biochem; 2017 Jun; 86():69-95. PubMed ID: 28125289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The Advancement of Attenuated Total Reflection Fourier Transform Infrared Technology in Clinical Application].
    Zhang XQ; Sun XL; Pan QH; Zhang YF; Xu Z; Guo XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):408-11. PubMed ID: 30265462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils.
    Hanczyc P; Mikhailovsky A; Boyer DR; Sawaya MR; Heeger A; Eisenberg D
    J Phys Chem B; 2018 Jan; 122(1):8-18. PubMed ID: 29237120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations.
    Waeytens J; Mathurin J; Deniset-Besseau A; Arluison V; Bousset L; Rezaei H; Raussens V; Dazzi A
    Analyst; 2021 Jan; 146(1):132-145. PubMed ID: 33107501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase.
    Matthes D; Gapsys V; Brennecke JT; de Groot BL
    Sci Rep; 2016 Sep; 6():33156. PubMed ID: 27616019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface effects on aggregation kinetics of amyloidogenic peptides.
    Vácha R; Linse S; Lund M
    J Am Chem Soc; 2014 Aug; 136(33):11776-82. PubMed ID: 25068615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers.
    Dandurand J; Samouillan V; Lacoste-Ferre MH; Lacabanne C; B Bochicchio ; Pepe A
    Pathol Biol (Paris); 2014 Apr; 62(2):100-7. PubMed ID: 24674658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism.
    Andrich K; Bieschke J
    Adv Exp Med Biol; 2015; 863():139-61. PubMed ID: 26092630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insoluble protein assemblies characterized by fourier transform infrared spectroscopy.
    Natalello A; Doglia SM
    Methods Mol Biol; 2015; 1258():347-69. PubMed ID: 25447875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein.
    Gallea JI; Sarroukh R; Yunes-Quartino P; Ruysschaert JM; Raussens V; Celej MS
    Biochim Biophys Acta; 2016 May; 1864(5):501-10. PubMed ID: 26845568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of metastable β-sheet oligomers from natively unstructured peptide.
    Guerrero-Muñoz MJ; Castillo-Carranza DL; Sengupta U; White MA; Kayed R
    ACS Chem Neurosci; 2013 Dec; 4(12):1520-3. PubMed ID: 24106878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy.
    Wang P; Bohr W; Otto M; Danzer KM; Mizaikoff B
    Anal Bioanal Chem; 2015 May; 407(14):4015-21. PubMed ID: 25869482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.